Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
I'll create a comprehensive chat application using the MobileLLM-Pro model with a modern, interactive interface. This will include conversation history, streaming responses, and a clean UI.
|
| 2 |
+
|
| 3 |
+
```python
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
+
from huggingface_hub import login
|
| 8 |
+
import os
|
| 9 |
+
from typing import List, Dict, Any
|
| 10 |
+
import time
|
| 11 |
+
|
| 12 |
+
# Configuration
|
| 13 |
+
MODEL_ID = "facebook/MobileLLM-Pro"
|
| 14 |
+
MAX_HISTORY_LENGTH = 10
|
| 15 |
+
MAX_NEW_TOKENS = 512
|
| 16 |
+
DEFAULT_SYSTEM_PROMPT = "You are a helpful, friendly, and intelligent assistant. Provide clear, accurate, and thoughtful responses."
|
| 17 |
+
|
| 18 |
+
# Login to Hugging Face (if token is provided)
|
| 19 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 20 |
+
if HF_TOKEN:
|
| 21 |
+
try:
|
| 22 |
+
login(token=HF_TOKEN)
|
| 23 |
+
print("Successfully logged in to Hugging Face")
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Warning: Could not login to Hugging Face: {e}")
|
| 26 |
+
|
| 27 |
+
class MobileLLMChat:
|
| 28 |
+
def __init__(self):
|
| 29 |
+
self.model = None
|
| 30 |
+
self.tokenizer = None
|
| 31 |
+
self.device = None
|
| 32 |
+
self.model_loaded = False
|
| 33 |
+
|
| 34 |
+
def load_model(self, version="instruct"):
|
| 35 |
+
"""Load the MobileLLM-Pro model and tokenizer"""
|
| 36 |
+
try:
|
| 37 |
+
print(f"Loading MobileLLM-Pro ({version})...")
|
| 38 |
+
|
| 39 |
+
# Load tokenizer
|
| 40 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 41 |
+
MODEL_ID,
|
| 42 |
+
trust_remote_code=True,
|
| 43 |
+
subfolder=version
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Load model
|
| 47 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 48 |
+
MODEL_ID,
|
| 49 |
+
trust_remote_code=True,
|
| 50 |
+
subfolder=version,
|
| 51 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 52 |
+
device_map="auto" if torch.cuda.is_available() else None
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Set device
|
| 56 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 57 |
+
if not torch.cuda.is_available():
|
| 58 |
+
self.model.to(self.device)
|
| 59 |
+
|
| 60 |
+
self.model.eval()
|
| 61 |
+
self.model_loaded = True
|
| 62 |
+
print(f"Model loaded successfully on {self.device}")
|
| 63 |
+
return True
|
| 64 |
+
|
| 65 |
+
except Exception as e:
|
| 66 |
+
print(f"Error loading model: {e}")
|
| 67 |
+
return False
|
| 68 |
+
|
| 69 |
+
def format_chat_history(self, history: List[Dict[str, str]], system_prompt: str) -> List[Dict[str, str]]:
|
| 70 |
+
"""Format chat history for the model"""
|
| 71 |
+
messages = [{"role": "system", "content": system_prompt}]
|
| 72 |
+
|
| 73 |
+
for msg in history:
|
| 74 |
+
if msg["role"] in ["user", "assistant"]:
|
| 75 |
+
messages.append(msg)
|
| 76 |
+
|
| 77 |
+
return messages
|
| 78 |
+
|
| 79 |
+
def generate_response(self, user_input: str, history: List[Dict[str, str]],
|
| 80 |
+
system_prompt: str, temperature: float = 0.7,
|
| 81 |
+
max_new_tokens: int = MAX_NEW_TOKENS) -> str:
|
| 82 |
+
"""Generate a response from the model"""
|
| 83 |
+
if not self.model_loaded:
|
| 84 |
+
return "Model not loaded. Please try loading the model first."
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
# Add user message to history
|
| 88 |
+
history.append({"role": "user", "content": user_input})
|
| 89 |
+
|
| 90 |
+
# Format messages
|
| 91 |
+
messages = self.format_chat_history(history, system_prompt)
|
| 92 |
+
|
| 93 |
+
# Apply chat template
|
| 94 |
+
inputs = self.tokenizer.apply_chat_template(
|
| 95 |
+
messages,
|
| 96 |
+
return_tensors="pt",
|
| 97 |
+
add_generation_prompt=True
|
| 98 |
+
).to(self.device)
|
| 99 |
+
|
| 100 |
+
# Generate response
|
| 101 |
+
with torch.no_grad():
|
| 102 |
+
outputs = self.model.generate(
|
| 103 |
+
inputs,
|
| 104 |
+
max_new_tokens=max_new_tokens,
|
| 105 |
+
temperature=temperature,
|
| 106 |
+
do_sample=True,
|
| 107 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 108 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Decode response
|
| 112 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 113 |
+
|
| 114 |
+
# Extract only the new response (remove input)
|
| 115 |
+
if response.startswith(messages[0]["content"]):
|
| 116 |
+
response = response[len(messages[0]["content"]):].strip()
|
| 117 |
+
|
| 118 |
+
# Remove the user input from the response
|
| 119 |
+
if user_input in response:
|
| 120 |
+
response = response.replace(user_input, "").strip()
|
| 121 |
+
|
| 122 |
+
# Clean up common prefixes
|
| 123 |
+
prefixes_to_remove = ["Assistant:", "assistant:", "Response:", "response:"]
|
| 124 |
+
for prefix in prefixes_to_remove:
|
| 125 |
+
if response.lower().startswith(prefix.lower()):
|
| 126 |
+
response = response[len(prefix):].strip()
|
| 127 |
+
|
| 128 |
+
# Add assistant response to history
|
| 129 |
+
history.append({"role": "assistant", "content": response})
|
| 130 |
+
|
| 131 |
+
return response
|
| 132 |
+
|
| 133 |
+
except Exception as e:
|
| 134 |
+
return f"Error generating response: {str(e)}"
|
| 135 |
+
|
| 136 |
+
def generate_stream(self, user_input: str, history: List[Dict[str, str]],
|
| 137 |
+
system_prompt: str, temperature: float = 0.7):
|
| 138 |
+
"""Generate a streaming response from the model"""
|
| 139 |
+
if not self.model_loaded:
|
| 140 |
+
yield "Model not loaded. Please try loading the model first."
|
| 141 |
+
return
|
| 142 |
+
|
| 143 |
+
try:
|
| 144 |
+
# Add user message to history
|
| 145 |
+
history.append({"role": "user", "content": user_input})
|
| 146 |
+
|
| 147 |
+
# Format messages
|
| 148 |
+
messages = self.format_chat_history(history, system_prompt)
|
| 149 |
+
|
| 150 |
+
# Apply chat template
|
| 151 |
+
inputs = self.tokenizer.apply_chat_template(
|
| 152 |
+
messages,
|
| 153 |
+
return_tensors="pt",
|
| 154 |
+
add_generation_prompt=True
|
| 155 |
+
).to(self.device)
|
| 156 |
+
|
| 157 |
+
# Generate streaming response
|
| 158 |
+
generated_text = ""
|
| 159 |
+
for token_id in self.model.generate(
|
| 160 |
+
inputs,
|
| 161 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 162 |
+
temperature=temperature,
|
| 163 |
+
do_sample=True,
|
| 164 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 165 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 166 |
+
streamer=None,
|
| 167 |
+
):
|
| 168 |
+
# Decode current token
|
| 169 |
+
new_token = self.tokenizer.decode(token_id[-1:], skip_special_tokens=True)
|
| 170 |
+
generated_text += new_token
|
| 171 |
+
|
| 172 |
+
# Extract only the new response
|
| 173 |
+
response = generated_text
|
| 174 |
+
if response.startswith(messages[0]["content"]):
|
| 175 |
+
response = response[len(messages[0]["content"]):].strip()
|
| 176 |
+
|
| 177 |
+
if user_input in response:
|
| 178 |
+
response = response.replace(user_input, "").strip()
|
| 179 |
+
|
| 180 |
+
# Clean up common prefixes
|
| 181 |
+
prefixes_to_remove = ["Assistant:", "assistant:", "Response:", "response:"]
|
| 182 |
+
for prefix in prefixes_to_remove:
|
| 183 |
+
if response.lower().startswith(prefix.lower()):
|
| 184 |
+
response = response[len(prefix):].strip()
|
| 185 |
+
|
| 186 |
+
yield response
|
| 187 |
+
|
| 188 |
+
# Stop if we hit end of sentence
|
| 189 |
+
if new_token in ["</s>", "<|endoftext|>", "."] and len(response) > 50:
|
| 190 |
+
break
|
| 191 |
+
|
| 192 |
+
# Add final response to history
|
| 193 |
+
history.append({"role": "assistant", "content": response})
|
| 194 |
+
|
| 195 |
+
except Exception as e:
|
| 196 |
+
yield f"Error generating response: {str(e)}"
|
| 197 |
+
|
| 198 |
+
# Initialize chat model
|
| 199 |
+
chat_model = MobileLLMChat()
|
| 200 |
+
|
| 201 |
+
def load_model_button(version):
|
| 202 |
+
"""Load the model when button is clicked"""
|
| 203 |
+
success = chat_model.load_model(version)
|
| 204 |
+
if success:
|
| 205 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(value="Model loaded successfully!")
|
| 206 |
+
else:
|
| 207 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(value="Failed to load model. Please check the logs.")
|
| 208 |
+
|
| 209 |
+
def clear_chat():
|
| 210 |
+
"""Clear the chat history"""
|
| 211 |
+
return [], []
|
| 212 |
+
|
| 213 |
+
def chat_fn(message, history, system_prompt, temperature, model_version):
|
| 214 |
+
"""Main chat function"""
|
| 215 |
+
if not chat_model.model_loaded:
|
| 216 |
+
return "Please load the model first using the button above."
|
| 217 |
+
|
| 218 |
+
# Convert history format
|
| 219 |
+
formatted_history = []
|
| 220 |
+
for user_msg, assistant_msg in history:
|
| 221 |
+
formatted_history.append({"role": "user", "content": user_msg})
|
| 222 |
+
if assistant_msg:
|
| 223 |
+
formatted_history.append({"role": "assistant", "content": assistant_msg})
|
| 224 |
+
|
| 225 |
+
# Generate response
|
| 226 |
+
response = chat_model.generate_response(message, formatted_history, system_prompt, temperature)
|
| 227 |
+
|
| 228 |
+
return response
|
| 229 |
+
|
| 230 |
+
def chat_stream_fn(message, history, system_prompt, temperature, model_version):
|
| 231 |
+
"""Streaming chat function"""
|
| 232 |
+
if not chat_model.model_loaded:
|
| 233 |
+
yield "Please load the model first using the button above."
|
| 234 |
+
return
|
| 235 |
+
|
| 236 |
+
# Convert history format
|
| 237 |
+
formatted_history = []
|
| 238 |
+
for user_msg, assistant_msg in history:
|
| 239 |
+
formatted_history.append({"role": "user", "content": user_msg})
|
| 240 |
+
if assistant_msg:
|
| 241 |
+
formatted_history.append({"role": "assistant", "content": assistant_msg})
|
| 242 |
+
|
| 243 |
+
# Generate streaming response
|
| 244 |
+
for chunk in chat_model.generate_stream(message, formatted_history, system_prompt, temperature):
|
| 245 |
+
yield chunk
|
| 246 |
+
|
| 247 |
+
# Create the Gradio interface
|
| 248 |
+
with gr.Blocks(
|
| 249 |
+
title="MobileLLM-Pro Chat",
|
| 250 |
+
theme=gr.themes.Soft(),
|
| 251 |
+
css="""
|
| 252 |
+
.gradio-container {
|
| 253 |
+
max-width: 900px !important;
|
| 254 |
+
margin: auto !important;
|
| 255 |
+
}
|
| 256 |
+
.message {
|
| 257 |
+
padding: 12px !important;
|
| 258 |
+
border-radius: 8px !important;
|
| 259 |
+
margin-bottom: 8px !important;
|
| 260 |
+
}
|
| 261 |
+
.user-message {
|
| 262 |
+
background-color: #e3f2fd !important;
|
| 263 |
+
margin-left: 20% !important;
|
| 264 |
+
}
|
| 265 |
+
.assistant-message {
|
| 266 |
+
background-color: #f5f5f5 !important;
|
| 267 |
+
margin-right: 20% !important;
|
| 268 |
+
}
|
| 269 |
+
"""
|
| 270 |
+
) as demo:
|
| 271 |
+
|
| 272 |
+
# Header
|
| 273 |
+
gr.HTML("""
|
| 274 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
| 275 |
+
<h1>🤖 MobileLLM-Pro Chat</h1>
|
| 276 |
+
<p>Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank">anycoder</a></p>
|
| 277 |
+
<p>Chat with Facebook's MobileLLM-Pro model optimized for on-device inference</p>
|
| 278 |
+
</div>
|
| 279 |
+
""")
|
| 280 |
+
|
| 281 |
+
# Model loading section
|
| 282 |
+
with gr.Row():
|
| 283 |
+
with gr.Column(scale=1):
|
| 284 |
+
model_version = gr.Dropdown(
|
| 285 |
+
choices=["instruct", "base"],
|
| 286 |
+
value="instruct",
|
| 287 |
+
label="Model Version",
|
| 288 |
+
info="Choose between instruct (chat) or base model"
|
| 289 |
+
)
|
| 290 |
+
load_btn = gr.Button("🚀 Load Model", variant="primary", size="lg")
|
| 291 |
+
|
| 292 |
+
with gr.Column(scale=2):
|
| 293 |
+
model_status = gr.Textbox(
|
| 294 |
+
label="Model Status",
|
| 295 |
+
value="Model not loaded",
|
| 296 |
+
interactive=False
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
# Configuration section
|
| 300 |
+
with gr.Accordion("⚙️ Configuration", open=False):
|
| 301 |
+
with gr.Row():
|
| 302 |
+
system_prompt = gr.Textbox(
|
| 303 |
+
value=DEFAULT_SYSTEM_PROMPT,
|
| 304 |
+
label="System Prompt",
|
| 305 |
+
lines=3,
|
| 306 |
+
info="Customize the AI's behavior and personality"
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
with gr.Row():
|
| 310 |
+
temperature = gr.Slider(
|
| 311 |
+
minimum=0.1,
|
| 312 |
+
maximum=2.0,
|
| 313 |
+
value=0.7,
|
| 314 |
+
step=0.1,
|
| 315 |
+
label="Temperature",
|
| 316 |
+
info="Controls randomness (higher = more creative)"
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
streaming = gr.Checkbox(
|
| 320 |
+
value=True,
|
| 321 |
+
label="Enable Streaming",
|
| 322 |
+
info="Show responses as they're being generated"
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
# Chat interface
|
| 326 |
+
chatbot = gr.Chatbot(
|
| 327 |
+
label="Chat History",
|
| 328 |
+
height=500,
|
| 329 |
+
show_copy_button=True,
|
| 330 |
+
bubble_full_width=False,
|
| 331 |
+
type="messages"
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
with gr.Row():
|
| 335 |
+
msg = gr.Textbox(
|
| 336 |
+
label="Your Message",
|
| 337 |
+
placeholder="Type your message here...",
|
| 338 |
+
scale=4,
|
| 339 |
+
container=False
|
| 340 |
+
)
|
| 341 |
+
submit_btn = gr.Button("Send", variant="primary", scale=1)
|
| 342 |
+
clear_btn = gr.Button("Clear", scale=0)
|
| 343 |
+
|
| 344 |
+
# Event handlers
|
| 345 |
+
load_btn.click(
|
| 346 |
+
load_model_button,
|
| 347 |
+
inputs=[model_version],
|
| 348 |
+
outputs=[load_btn, model_status, model_status]
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
# Handle chat submission
|
| 352 |
+
def handle_chat(message, history, system_prompt, temperature, model_version, streaming):
|
| 353 |
+
if streaming:
|
| 354 |
+
return chat_stream_fn(message, history, system_prompt, temperature, model_version)
|
| 355 |
+
else:
|
| 356 |
+
return chat_fn(message, history, system_prompt, temperature, model_version)
|
| 357 |
+
|
| 358 |
+
msg.submit(
|
| 359 |
+
handle_chat,
|
| 360 |
+
inputs=[msg, chatbot, system_prompt, temperature, model_version, streaming],
|
| 361 |
+
outputs=[chatbot]
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
submit_btn.click(
|
| 365 |
+
handle_chat,
|
| 366 |
+
inputs=[msg, chatbot, system_prompt, temperature, model_version, streaming],
|
| 367 |
+
outputs=[chatbot]
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
clear_btn.click(
|
| 371 |
+
clear_chat,
|
| 372 |
+
outputs=[chatbot, msg]
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# Examples
|
| 376 |
+
gr.Examples(
|
| 377 |
+
examples=[
|
| 378 |
+
["What are the benefits of on-device AI models?"],
|
| 379 |
+
["Explain quantum computing in simple terms."],
|
| 380 |
+
["Write a short poem about technology."],
|
| 381 |
+
["What's the difference between machine learning and deep learning?"],
|
| 382 |
+
["How can I improve my productivity?"],
|
| 383 |
+
],
|
| 384 |
+
inputs=[msg],
|
| 385 |
+
label="Example Prompts"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
# Footer
|
| 389 |
+
gr.HTML("""
|
| 390 |
+
<div style="text-align: center; margin-top: 20px; color: #666;">
|
| 391 |
+
<p>⚠️ Note: This model requires significant computational resources. Loading may take a few minutes.</p>
|
| 392 |
+
<p>Model: <a href="https://huggingface.co/facebook/MobileLLM-Pro" target="_blank">facebook/MobileLLM-Pro</a></p>
|
| 393 |
+
</div>
|
| 394 |
+
""")
|
| 395 |
+
|
| 396 |
+
# Launch the app
|
| 397 |
+
if __name__ == "__main__":
|
| 398 |
+
demo.launch(
|
| 399 |
+
share=True,
|
| 400 |
+
show_error=True,
|
| 401 |
+
show_tips=True,
|
| 402 |
+
debug=True
|
| 403 |
+
)
|
| 404 |
+
```
|
| 405 |
+
|
| 406 |
+
This chat application provides:
|
| 407 |
+
|
| 408 |
+
## Key Features:
|
| 409 |
+
1. **Model Management**: Load either the "instruct" or "base" version of MobileLLM-Pro
|
| 410 |
+
2. **Interactive Chat**: Full conversation history with message bubbles
|
| 411 |
+
3. **Streaming Responses**: See responses generate in real-time
|
| 412 |
+
4. **Customizable Settings**: Adjust system prompt and temperature
|
| 413 |
+
5. **Modern UI**: Clean, responsive interface with examples
|
| 414 |
+
6. **Error Handling**: Graceful error messages and status updates
|
| 415 |
+
|
| 416 |
+
## How to Use:
|
| 417 |
+
1. Set your `HF_TOKEN` environment variable (if required for the model)
|
| 418 |
+
2. Select model version (instruct recommended for chat)
|
| 419 |
+
3. Click "Load Model" and wait for it to load
|
| 420 |
+
4. Start chatting with the AI
|
| 421 |
+
5. Adjust settings like temperature and system prompt as needed
|
| 422 |
+
|
| 423 |
+
## Features:
|
| 424 |
+
- **Conversation History**: Maintains context across messages
|
| 425 |
+
- **Example Prompts**: Quick-start suggestions
|
| 426 |
+
- **Clear Function**: Reset the conversation
|
| 427 |
+
- **Streaming Toggle**: Choose between instant or streaming responses
|
| 428 |
+
- **Status Updates**: Real-time model loading status
|
| 429 |
+
|
| 430 |
+
The app handles the model loading process gracefully and provides a professional chat interface for interacting with MobileLLM-Pro.
|