Mask2Former / mask2former_video /video_maskformer_model.py
Ahsen Khaliq
add files
16aee22
raw
history blame
12.5 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import math
from typing import Tuple
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
from .modeling.criterion import VideoSetCriterion
from .modeling.matcher import VideoHungarianMatcher
from .utils.memory import retry_if_cuda_oom
logger = logging.getLogger(__name__)
@META_ARCH_REGISTRY.register()
class VideoMaskFormer(nn.Module):
"""
Main class for mask classification semantic segmentation architectures.
"""
@configurable
def __init__(
self,
*,
backbone: Backbone,
sem_seg_head: nn.Module,
criterion: nn.Module,
num_queries: int,
object_mask_threshold: float,
overlap_threshold: float,
metadata,
size_divisibility: int,
sem_seg_postprocess_before_inference: bool,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
# video
num_frames,
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
sem_seg_head: a module that predicts semantic segmentation from backbone features
criterion: a module that defines the loss
num_queries: int, number of queries
object_mask_threshold: float, threshold to filter query based on classification score
for panoptic segmentation inference
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
segmentation inference
size_divisibility: Some backbones require the input height and width to be divisible by a
specific integer. We can use this to override such requirement.
sem_seg_postprocess_before_inference: whether to resize the prediction back
to original input size before semantic segmentation inference or after.
For high-resolution dataset like Mapillary, resizing predictions before
inference will cause OOM error.
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
semantic_on: bool, whether to output semantic segmentation prediction
instance_on: bool, whether to output instance segmentation prediction
panoptic_on: bool, whether to output panoptic segmentation prediction
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
"""
super().__init__()
self.backbone = backbone
self.sem_seg_head = sem_seg_head
self.criterion = criterion
self.num_queries = num_queries
self.overlap_threshold = overlap_threshold
self.object_mask_threshold = object_mask_threshold
self.metadata = metadata
if size_divisibility < 0:
# use backbone size_divisibility if not set
size_divisibility = self.backbone.size_divisibility
self.size_divisibility = size_divisibility
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
self.num_frames = num_frames
@classmethod
def from_config(cls, cfg):
backbone = build_backbone(cfg)
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
# Loss parameters:
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
# loss weights
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
# building criterion
matcher = VideoHungarianMatcher(
cost_class=class_weight,
cost_mask=mask_weight,
cost_dice=dice_weight,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
)
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight}
if deep_supervision:
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
aux_weight_dict = {}
for i in range(dec_layers - 1):
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
losses = ["labels", "masks"]
criterion = VideoSetCriterion(
sem_seg_head.num_classes,
matcher=matcher,
weight_dict=weight_dict,
eos_coef=no_object_weight,
losses=losses,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
)
return {
"backbone": backbone,
"sem_seg_head": sem_seg_head,
"criterion": criterion,
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
"sem_seg_postprocess_before_inference": True,
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
# video
"num_frames": cfg.INPUT.SAMPLING_FRAME_NUM,
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "instances": per-region ground truth
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model (may be different
from input resolution), used in inference.
Returns:
list[dict]:
each dict has the results for one image. The dict contains the following keys:
* "sem_seg":
A Tensor that represents the
per-pixel segmentation prediced by the head.
The prediction has shape KxHxW that represents the logits of
each class for each pixel.
* "panoptic_seg":
A tuple that represent panoptic output
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
Each dict contains keys "id", "category_id", "isthing".
"""
images = []
for video in batched_inputs:
for frame in video["image"]:
images.append(frame.to(self.device))
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
features = self.backbone(images.tensor)
outputs = self.sem_seg_head(features)
if self.training:
# mask classification target
targets = self.prepare_targets(batched_inputs, images)
# bipartite matching-based loss
losses = self.criterion(outputs, targets)
for k in list(losses.keys()):
if k in self.criterion.weight_dict:
losses[k] *= self.criterion.weight_dict[k]
else:
# remove this loss if not specified in `weight_dict`
losses.pop(k)
return losses
else:
mask_cls_results = outputs["pred_logits"]
mask_pred_results = outputs["pred_masks"]
mask_cls_result = mask_cls_results[0]
# upsample masks
mask_pred_result = retry_if_cuda_oom(F.interpolate)(
mask_pred_results[0],
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)
del outputs
input_per_image = batched_inputs[0]
image_size = images.image_sizes[0] # image size without padding after data augmentation
height = input_per_image.get("height", image_size[0]) # raw image size before data augmentation
width = input_per_image.get("width", image_size[1])
return retry_if_cuda_oom(self.inference_video)(mask_cls_result, mask_pred_result, image_size, height, width)
def prepare_targets(self, targets, images):
h_pad, w_pad = images.tensor.shape[-2:]
gt_instances = []
for targets_per_video in targets:
_num_instance = len(targets_per_video["instances"][0])
mask_shape = [_num_instance, self.num_frames, h_pad, w_pad]
gt_masks_per_video = torch.zeros(mask_shape, dtype=torch.bool, device=self.device)
gt_ids_per_video = []
for f_i, targets_per_frame in enumerate(targets_per_video["instances"]):
targets_per_frame = targets_per_frame.to(self.device)
h, w = targets_per_frame.image_size
gt_ids_per_video.append(targets_per_frame.gt_ids[:, None])
gt_masks_per_video[:, f_i, :h, :w] = targets_per_frame.gt_masks.tensor
gt_ids_per_video = torch.cat(gt_ids_per_video, dim=1)
valid_idx = (gt_ids_per_video != -1).any(dim=-1)
gt_classes_per_video = targets_per_frame.gt_classes[valid_idx] # N,
gt_ids_per_video = gt_ids_per_video[valid_idx] # N, num_frames
gt_instances.append({"labels": gt_classes_per_video, "ids": gt_ids_per_video})
gt_masks_per_video = gt_masks_per_video[valid_idx].float() # N, num_frames, H, W
gt_instances[-1].update({"masks": gt_masks_per_video})
return gt_instances
def inference_video(self, pred_cls, pred_masks, img_size, output_height, output_width):
if len(pred_cls) > 0:
scores = F.softmax(pred_cls, dim=-1)[:, :-1]
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
# keep top-10 predictions
scores_per_image, topk_indices = scores.flatten(0, 1).topk(10, sorted=False)
labels_per_image = labels[topk_indices]
topk_indices = topk_indices // self.sem_seg_head.num_classes
pred_masks = pred_masks[topk_indices]
pred_masks = pred_masks[:, :, : img_size[0], : img_size[1]]
pred_masks = F.interpolate(
pred_masks, size=(output_height, output_width), mode="bilinear", align_corners=False
)
masks = pred_masks > 0.
out_scores = scores_per_image.tolist()
out_labels = labels_per_image.tolist()
out_masks = [m for m in masks.cpu()]
else:
out_scores = []
out_labels = []
out_masks = []
video_output = {
"image_size": (output_height, output_width),
"pred_scores": out_scores,
"pred_labels": out_labels,
"pred_masks": out_masks,
}
return video_output