Spaces:
Runtime error
Runtime error
import os | |
import os | |
os.system("nvcc --version") | |
print(os.environ.get('CUDA_PATH')) | |
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html') | |
os.system("git clone https://github.com/facebookresearch/Mask2Former.git") | |
os.chdir("Mask2Former") | |
os.system("pwd") | |
os.system("pip install git+https://github.com/cocodataset/panopticapi.git") | |
os.chdir("mask2former/modeling/pixel_decoder/ops") | |
os.system("pwd") | |
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0" | |
os.environ["FORCE_CUDA"] = "1" | |
os.system("python setup.py build install") | |
os.chdir("/home/user/app/Mask2Former/") | |
os.system("pwd") | |
import gradio as gr | |
# check pytorch installation: | |
import detectron2 | |
from detectron2.utils.logger import setup_logger | |
setup_logger() | |
setup_logger(name="mask2former") | |
# import some common libraries | |
import numpy as np | |
import cv2 | |
import torch | |
# import some common detectron2 utilities | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer, ColorMode | |
from detectron2.data import MetadataCatalog | |
from detectron2.projects.deeplab import add_deeplab_config | |
coco_metadata = MetadataCatalog.get("coco_2017_val_panoptic") | |
# import Mask2Former project | |
from mask2former import add_maskformer2_config | |
cfg = get_cfg() | |
cfg.MODEL.DEVICE='cpu' | |
add_deeplab_config(cfg) | |
add_maskformer2_config(cfg) | |
cfg.merge_from_file("configs/coco/panoptic-segmentation/swin/maskformer2_swin_large_IN21k_384_bs16_100ep.yaml") | |
cfg.MODEL.WEIGHTS = 'https://dl.fbaipublicfiles.com/maskformer/mask2former/coco/panoptic/maskformer2_swin_large_IN21k_384_bs16_100ep/model_final_f07440.pkl' | |
cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON = True | |
cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON = True | |
cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON = True | |
predictor = DefaultPredictor(cfg) | |
outputs = predictor(im) | |
def inference(img): | |
im = cv2.imread(img) | |
v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW) | |
panoptic_result = v.draw_panoptic_seg(outputs["panoptic_seg"][0].to("cpu"), outputs["panoptic_seg"][1]).get_image() | |
v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW) | |
instance_result = v.draw_instance_predictions(outputs["instances"].to("cpu")).get_image() | |
v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW) | |
semantic_result = v.draw_sem_seg(outputs["sem_seg"].argmax(0).to("cpu")).get_image() | |
return Image.fromarray(np.uint8(panoptic_result)).convert('RGB'),Image.fromarray(np.uint8(instance_result)).convert('RGB'),Image.fromarray(np.uint8(semantic_result)).convert('RGB') | |
title = "Detectron 2" | |
description = "Gradio demo for Detectron 2: A PyTorch-based modular object detection library. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/' target='_blank'>Detectron2: A PyTorch-based modular object detection library</a> | <a href='https://github.com/facebookresearch/detectron2' target='_blank'>Github Repo</a></p>" | |
examples = [['airplane.png']] | |
gr.Interface(inference, inputs=gr.inputs.Image(type="filepath"), outputs=[gr.outputs.Image(label="Panoptic segmentation",type="pil"),gr.outputs.Image(label="instance segmentation",type="pil"),gr.outputs.Image(label="semantic segmentation",type="pil")],enable_queue=True, title=title, | |
description=description, | |
article=article, | |
examples=examples).launch() |