akhaliq's picture
akhaliq HF Staff
Update app.py
e4af04d verified
import os
import sys
import spaces
import gradio as gr
import torch
import math
from PIL import Image
from transformers import AutoTokenizer
from model import LLaDAForMultiModalGeneration
from utils.image_utils import (
decode_vq_to_image, calculate_vq_params,
generate_crop_size_list, var_center_crop, add_break_line,
encode_img_with_breaks, encode_img_with_paint
)
from utils.prompt_utils import generate_text_image_to_text_image_prompt
import torch.nn.functional as F
MODEL = None
TOKENIZER = None
VQVAE = None
DEVICE = None
CURRENT_MODEL_PATH = None
SPECIAL_TOKENS = {
"mask_token": 126336,
"newline_token": 126084,
"image_token_offset": 126356,
"answer_start": 126354,
"answer_end": 126355,
"boi": 126349,
"eoi": 126350,
"uncondition": 126351
}
SYSTEM_PROMPT = "Generate an image applying the following editing instruction based on the original image."
def cosine_schedule(t):
return torch.cos(t * math.pi / 2)
def add_gumbel_noise(logits, temperature=1.0, generator=None):
if temperature == 0:
return logits
if generator is not None:
uniform_noise = torch.rand(logits.shape, dtype=logits.dtype, device=logits.device, generator=generator)
else:
uniform_noise = torch.rand_like(logits)
gumbel_noise = -torch.log(-torch.log(uniform_noise + 1e-10) + 1e-10)
return logits + temperature * gumbel_noise
def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None):
if generator is not None:
noise = torch.randn(probs.shape, dtype=probs.dtype, device=probs.device, generator=generator)
else:
noise = torch.randn_like(probs)
confidence = torch.log(probs + 1e-10) + temperature * noise
sorted_confidence, sorted_indices = torch.sort(confidence, dim=-1, descending=False)
if isinstance(mask_len, torch.Tensor):
mask_len_clamped = torch.clamp(mask_len, 0, probs.shape[-1] - 1)
mask_len_clamped = mask_len_clamped.long().squeeze(-1)
else:
mask_len_clamped = int(mask_len)
if isinstance(mask_len_clamped, torch.Tensor):
batch = probs.shape[0]
masking = torch.zeros_like(probs, dtype=torch.bool, device=probs.device)
for b in range(batch):
k = mask_len_clamped[b].item()
if k <= 0:
continue
low_idx = sorted_indices[b, :k]
masking[b, low_idx] = True
else:
k = mask_len_clamped
if k <= 0:
masking = torch.zeros_like(probs, dtype=torch.bool, device=probs.device)
else:
low_idx = sorted_indices[:, :k]
masking = torch.zeros_like(probs, dtype=torch.bool, device=probs.device)
batch = probs.shape[0]
for b in range(batch):
masking[b, low_idx[b]] = True
return masking
def get_num_transfer_tokens(text_masked_indices, text_steps):
batch_size = text_masked_indices.shape[0]
initial_masks = text_masked_indices.sum(dim=1)
num_transfer = torch.zeros(batch_size, text_steps, dtype=torch.long, device=text_masked_indices.device)
for b in range(batch_size):
total_masks = initial_masks[b].item()
remaining = total_masks
for step in range(text_steps):
ratio = (step + 1) / text_steps
target_remaining = int(total_masks * (1 - ratio))
tokens_to_unmask = max(0, remaining - target_remaining)
num_transfer[b, step] = tokens_to_unmask
remaining -= tokens_to_unmask
return num_transfer
@torch.no_grad()
def decode_text_with_masks(combined_input_ids, text_start, text_end, tokenizer, mask_token):
text_ids = combined_input_ids[0, text_start:text_end].cpu().tolist()
result_parts = []
consecutive_masks = 0
for token_id in text_ids:
if token_id == mask_token:
consecutive_masks += 1
else:
if consecutive_masks > 0:
if consecutive_masks <= 10:
result_parts.append("β–“" * consecutive_masks)
else:
result_parts.append(f"β–“β–“β–“β–“β–“[...{consecutive_masks - 5} more]")
consecutive_masks = 0
try:
token_text = tokenizer.decode([token_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
if token_text.strip() or token_text in [' ', '\n', '\t']:
result_parts.append(token_text)
except:
result_parts.append(f"[{token_id}]")
if consecutive_masks > 0:
if consecutive_masks <= 10:
result_parts.append("β–“" * consecutive_masks)
else:
result_parts.append(f"β–“β–“β–“β–“β–“[...{consecutive_masks - 5} more]")
return "".join(result_parts)
@torch.no_grad()
def generate_ti2ti_stepwise(
model, input_ids, text_start, text_end, image_start, seq_len, newline_every,
text_steps=100, temperature=1.0, text_temperature=0.7, cfg_scale=0.0, cfg_img=4.0,
uncon_text=None, uncon_image=None, tokenizer=None, remasking='low_confidence',
noise_schedule=cosine_schedule, generator=None, text_vocab_size=126356,
codebook_size=8192, vqvae=None, image_height=512, image_width=512,
):
device = input_ids.device
MASK_TOKEN = SPECIAL_TOKENS["mask_token"]
NEW_LINE = SPECIAL_TOKENS["newline_token"]
combined_input_ids = input_ids.clone()
num_vq_tokens = seq_len
total_image_len = seq_len + seq_len // newline_every
image_end = image_start + total_image_len
text_masked_indices = combined_input_ids[:, text_start:text_end] == MASK_TOKEN
num_transfer_tokens = get_num_transfer_tokens(text_masked_indices, text_steps)
image_generation_step_indices = torch.linspace(
0, text_steps - 1, int(text_steps * 0.3)
).round().int().tolist()
image_position_mapping = []
for i in range(image_start, image_end):
if combined_input_ids[0, i] != NEW_LINE:
image_position_mapping.append(i)
batch_size = combined_input_ids.shape[0]
initial_text_display = decode_text_with_masks(combined_input_ids, text_start, text_end, tokenizer, MASK_TOKEN)
last_generated_image = None
yield 0, initial_text_display, None, f"Step 0/{text_steps}"
for step in range(text_steps):
cond_logits = model(combined_input_ids, infer=True, use_cache=False).logits
text_masked_indices = combined_input_ids[:, text_start:text_end] == MASK_TOKEN
if text_masked_indices.sum() > 0:
text_logits = cond_logits[:, text_start:text_end, :]
logits_with_noise = add_gumbel_noise(text_logits, temperature=text_temperature, generator=generator)
x0 = torch.argmax(logits_with_noise, dim=-1)
if remasking == 'low_confidence':
p = F.softmax(text_logits.to(torch.float64), dim=-1)
x0_p = torch.squeeze(torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1)
elif remasking == 'random':
if generator is not None:
x0_p = torch.rand(x0.shape, dtype=x0.dtype, device=x0.device, generator=generator)
else:
x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
else:
x0_p = torch.ones_like(x0, dtype=torch.float)
x0 = torch.where(text_masked_indices, x0, combined_input_ids[:, text_start:text_end])
confidence = torch.where(text_masked_indices, x0_p, float('-inf'))
transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
for j in range(confidence.shape[0]):
k = num_transfer_tokens[j, step].item()
if k > 0:
_, select_index = torch.topk(confidence[j], k=k)
transfer_index[j, select_index] = True
combined_input_ids[:, text_start:text_end][transfer_index] = x0[transfer_index]
if step in image_generation_step_indices:
vq_tokens_list = []
mask_positions = []
for idx, pos in enumerate(image_position_mapping):
token = combined_input_ids[0, pos].item()
if token == MASK_TOKEN:
vq_tokens_list.append(-1)
mask_positions.append(idx)
else:
vq_token = token - text_vocab_size
vq_token = max(0, min(vq_token, codebook_size - 1))
vq_tokens_list.append(vq_token)
vq_tokens_tensor = torch.tensor(vq_tokens_list, device=device).unsqueeze(0)
unknown_map = vq_tokens_tensor == -1
cond_image_logits_list = []
for pos in image_position_mapping:
cond_image_logits_list.append(
cond_logits[:, pos:pos+1, text_vocab_size:text_vocab_size+codebook_size]
)
cond_vq_logits = torch.cat(cond_image_logits_list, dim=1)
if (cfg_scale > 0.0 and uncon_text is not None) or (cfg_img > 0.0 and uncon_image is not None):
if uncon_text is None:
combined_uncond_text = combined_input_ids.clone()
else:
combined_uncond_text = combined_input_ids.clone()
prefix_len = uncon_text.shape[1]
combined_uncond_text[:, :prefix_len] = uncon_text.to(device)
if uncon_image is None:
combined_uncond_img = combined_input_ids.clone()
else:
combined_uncond_img = combined_input_ids.clone()
prefix_len_img = uncon_image.shape[1]
combined_uncond_img[:, :prefix_len_img] = uncon_image.to(device)
uncond_text_logits_full = model(combined_uncond_text, infer=True, use_cache=False).logits
uncond_img_logits_full = model(combined_uncond_img, infer=True, use_cache=False).logits
uncond_text_vq_list = []
uncond_img_vq_list = []
for pos in image_position_mapping:
uncond_text_vq_list.append(
uncond_text_logits_full[:, pos:pos+1, text_vocab_size:text_vocab_size+codebook_size]
)
uncond_img_vq_list.append(
uncond_img_logits_full[:, pos:pos+1, text_vocab_size:text_vocab_size+codebook_size]
)
uncond_text_vq_logits = torch.cat(uncond_text_vq_list, dim=1)
uncond_img_vq_logits = torch.cat(uncond_img_vq_list, dim=1)
else:
uncond_text_vq_logits = torch.zeros_like(cond_vq_logits)
uncond_img_vq_logits = torch.zeros_like(cond_vq_logits)
image_logits = cond_vq_logits
if cfg_scale != 0.0:
image_logits = image_logits + cfg_scale * (cond_vq_logits - uncond_text_vq_logits)
if cfg_img != 0.0:
image_logits = image_logits + cfg_img * (cond_vq_logits - uncond_img_vq_logits)
probs = F.softmax(image_logits, dim=-1)
if temperature == 0:
sampled_ids = probs.argmax(dim=-1)
else:
sampled = probs.reshape(-1, image_logits.size(-1))
if generator is not None:
sampled_ids = torch.multinomial(sampled, 1, generator=generator)[:, 0].view(*image_logits.shape[:-1])
else:
sampled_ids = torch.multinomial(sampled, 1)[:, 0].view(*image_logits.shape[:-1])
sampled_ids = torch.where(unknown_map, sampled_ids, vq_tokens_tensor)
sampled_ids = torch.clamp(sampled_ids, 0, codebook_size - 1)
selected_probs = torch.gather(probs, -1, sampled_ids.long()[..., None]).squeeze(-1)
high_val = torch.finfo(selected_probs.dtype).max
selected_probs = torch.where(unknown_map, selected_probs, high_val)
ratio = 1.0 * (step + 1) / text_steps
mask_ratio = noise_schedule(torch.tensor(ratio, device=device))
unknown_counts = unknown_map.sum(dim=-1, keepdim=True)
mask_len = (num_vq_tokens * mask_ratio).floor().unsqueeze(0).to(device)
mask_len = torch.max(torch.tensor([1], device=device), torch.min(unknown_counts - 1, mask_len.to(device).long()))
if mask_len.ndim == 1:
mask_len = mask_len.unsqueeze(1)
img_temp = temperature * (1.0 - ratio)
masking = mask_by_random_topk(mask_len, selected_probs, img_temp, generator=generator)
final_vq_tokens = torch.where(masking, torch.tensor(-1, device=device), sampled_ids)
for idx, pos in enumerate(image_position_mapping):
v = final_vq_tokens[0, idx].item()
if v == -1:
combined_input_ids[0, pos] = MASK_TOKEN
else:
combined_input_ids[0, pos] = int(v + text_vocab_size)
try:
decoded_image = decode_vq_to_image(
sampled_ids, None, None, image_height, image_width, vqvae
)
masked_positions_bool = masking[0]
if masked_positions_bool.sum() > 0:
from PIL import ImageDraw
decoded_image = decoded_image.copy()
draw = ImageDraw.Draw(decoded_image, 'RGBA')
vae_scale = 2 ** (len(VQVAE.config.block_out_channels) - 1)
token_h = image_height // vae_scale
token_w = image_width // vae_scale
pixel_h = image_height // token_h
pixel_w = image_width // token_w
masked_indices = torch.where(masked_positions_bool)[0].cpu().tolist()
for masked_idx in masked_indices:
token_row = masked_idx // token_w
token_col = masked_idx % token_w
y1 = token_row * pixel_h
x1 = token_col * pixel_w
y2 = y1 + pixel_h
x2 = x1 + pixel_w
draw.rectangle([x1, y1, x2, y2], fill=(128, 128, 128, 120))
last_generated_image = decoded_image
except Exception as e:
pass
text_display = decode_text_with_masks(combined_input_ids, text_start, text_end, tokenizer, MASK_TOKEN)
text_masks_remaining = (combined_input_ids[:, text_start:text_end] == MASK_TOKEN).sum().item()
text_progress = (1 - text_masks_remaining / (text_end - text_start)) * 100
status_msg = f"Step {step + 1}/{text_steps} | Text: {text_progress:.1f}%"
if step in image_generation_step_indices:
image_masks_remaining = sum(1 for pos in image_position_mapping if combined_input_ids[0, pos] == MASK_TOKEN)
image_progress = (1 - image_masks_remaining / num_vq_tokens) * 100
status_msg += f" | Image: {image_progress:.1f}%"
if step % 5 == 0 or step in image_generation_step_indices or step == text_steps - 1:
yield step + 1, text_display, last_generated_image, status_msg
final_text_display = decode_text_with_masks(combined_input_ids, text_start, text_end, tokenizer, MASK_TOKEN)
if last_generated_image is not None:
final_image = last_generated_image
else:
final_vq_tokens = []
final_mask_positions = []
for idx, pos in enumerate(image_position_mapping):
token = combined_input_ids[0, pos].item()
if token != MASK_TOKEN:
vq_token = token - text_vocab_size
vq_token = max(0, min(vq_token, codebook_size - 1))
final_vq_tokens.append(vq_token)
else:
final_vq_tokens.append(codebook_size // 2)
final_mask_positions.append(idx)
vq_tensor = torch.tensor(final_vq_tokens, dtype=torch.long, device=device).unsqueeze(0)
final_image = decode_vq_to_image(vq_tensor, None, None, image_height, image_width, vqvae)
if final_mask_positions:
from PIL import ImageDraw
final_image = final_image.copy()
draw = ImageDraw.Draw(final_image, 'RGBA')
vae_scale = 2 ** (len(VQVAE.config.block_out_channels) - 1)
token_h = image_height // vae_scale
token_w = image_width // vae_scale
pixel_h = image_height // token_h
pixel_w = image_width // token_w
for masked_idx in final_mask_positions:
token_row = masked_idx // token_w
token_col = masked_idx % token_w
y1 = token_row * pixel_h
x1 = token_col * pixel_w
y2 = y1 + pixel_h
x2 = x1 + pixel_w
draw.rectangle([x1, y1, x2, y2], fill=(128, 128, 128, 120))
yield text_steps, final_text_display, final_image, "βœ“ Complete"
def load_model_and_vae(model_path, vae_path):
global MODEL, TOKENIZER, VQVAE, DEVICE, CURRENT_MODEL_PATH
if MODEL is not None and CURRENT_MODEL_PATH == model_path:
return f"Model already loaded: {model_path}"
try:
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TOKENIZER = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
MODEL = LLaDAForMultiModalGeneration.from_pretrained(
model_path, torch_dtype=torch.bfloat16, device_map="auto"
)
MODEL.eval()
from diffusers import VQModel
VQVAE = VQModel.from_pretrained(vae_path, subfolder="vqvae").to(DEVICE)
CURRENT_MODEL_PATH = model_path
return f"βœ“ Model loaded | Device: {DEVICE}"
except Exception as e:
MODEL = None
TOKENIZER = None
VQVAE = None
CURRENT_MODEL_PATH = None
return f"βœ— Failed: {str(e)}"
@spaces.GPU()
def generate_wrapper(
input_image, prompt_text, model_path, vae_path, height, width,
text_steps, text_gen_length, text_block_length, cfg_scale, cfg_img,
temperature, text_temperature, remasking_strategy, painting_mode,
mask_h_ratio, mask_w_ratio, seed,
):
global MODEL, TOKENIZER, VQVAE, DEVICE
if MODEL is None or TOKENIZER is None or VQVAE is None:
load_status = load_model_and_vae(model_path, vae_path)
if "Failed" in load_status:
yield "", None, load_status
return
if input_image is None:
yield "", None, "βœ— No input image"
return
if seed != 0:
torch.manual_seed(seed)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
else:
generator = None
MASK = SPECIAL_TOKENS["mask_token"]
NEW_LINE = SPECIAL_TOKENS["newline_token"]
BOA = SPECIAL_TOKENS["answer_start"]
EOA = SPECIAL_TOKENS["answer_end"]
BOI = SPECIAL_TOKENS["boi"]
EOI = SPECIAL_TOKENS["eoi"]
try:
input_prompt, uncon_text = generate_text_image_to_text_image_prompt(
prompt_text, SYSTEM_PROMPT
)
prompt_ids = TOKENIZER(input_prompt)["input_ids"]
uncon_text_ids = TOKENIZER(uncon_text)["input_ids"]
img = input_image.convert("RGB")
crop_size_list = generate_crop_size_list((512 // 32) ** 2, 32)
img = var_center_crop(img, crop_size_list=crop_size_list)
input_img_token = encode_img_with_breaks(img, VQVAE)
con_input_list = prompt_ids[:-1] + input_img_token + prompt_ids[-1:]
uncon_input_text = uncon_text_ids[:-1] + input_img_token + uncon_text_ids[-1:]
uncon_input_image = prompt_ids
vae_scale = 2 ** (len(VQVAE.config.block_out_channels) - 1)
seq_len, newline_every, token_grid_height, token_grid_width = calculate_vq_params(
height, width, vae_scale
)
text_mask_tokens = [MASK] * text_gen_length
if painting_mode:
img_mask_token, img_vis = encode_img_with_paint(
img, vqvae=VQVAE, mask_h_ratio=mask_h_ratio,
mask_w_ratio=mask_w_ratio, mask_mode=painting_mode
)
else:
img_mask_token = add_break_line(
[MASK] * seq_len, token_grid_height, token_grid_width,
new_number=NEW_LINE
)
end_token_ids = TOKENIZER("</answer>", add_special_tokens=False).input_ids
pred_token = [BOA] + [BOI] + img_mask_token + [EOI] + text_mask_tokens + end_token_ids
code_start = len(con_input_list)
image_start = len(con_input_list) + 2
image_end = image_start + len(img_mask_token)
text_start = image_end + 1
text_end = text_start + text_gen_length
full_input_ids = con_input_list + pred_token
con_input = torch.tensor(full_input_ids, device=DEVICE).unsqueeze(0)
uncon_input_text_tensor = torch.tensor(uncon_input_text, device=DEVICE).unsqueeze(0)
uncon_input_image_tensor = torch.tensor(uncon_input_image, device=DEVICE).unsqueeze(0)
config = MODEL.config
text_vocab_size = getattr(config, 'text_vocab_size', 126356)
codebook_size = getattr(config, 'codebook_size', 8192)
for step, text_display, image, status in generate_ti2ti_stepwise(
model=MODEL, input_ids=con_input, text_start=text_start, text_end=text_end,
image_start=image_start, seq_len=seq_len, newline_every=newline_every,
text_steps=text_steps, temperature=temperature, text_temperature=text_temperature,
cfg_scale=cfg_scale, cfg_img=cfg_img, uncon_text=uncon_input_text_tensor,
uncon_image=uncon_input_image_tensor, tokenizer=TOKENIZER,
remasking=remasking_strategy, noise_schedule=cosine_schedule,
generator=generator, text_vocab_size=text_vocab_size,
codebook_size=codebook_size, vqvae=VQVAE,
image_height=height, image_width=width,
):
yield text_display, image, status
except Exception as e:
import traceback
yield "", None, f"βœ— Error: {str(e)}"
css_styles = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
max-width: 1400px !important;
margin: auto;
}
.gr-button-primary {
background: linear-gradient(90deg, #7c3aed 0%, #a855f7 100%) !important;
border: none !important;
color: white !important;
}
.gr-button-primary:hover {
transform: scale(1.02);
box-shadow: 0 4px 12px rgba(124, 58, 237, 0.4) !important;
}
.output-markdown {
min-height: 400px !important;
max-height: 600px !important;
overflow-y: auto !important;
padding: 12px !important;
background: #fafafa !important;
border-radius: 8px !important;
border: 1px solid #e0e0e0 !important;
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace !important;
font-size: 13px !important;
line-height: 1.5 !important;
}
.output-markdown .prose,
.output-markdown .prose * {
font-size: 10px !important;
line-height: 1.4 !important;
}
.output-markdown h1 {
font-size: 1.4em !important;
margin-top: 0.8em !important;
margin-bottom: 0.4em !important;
color: #333 !important;
}
.output-markdown h2 {
font-size: 1.2em !important;
margin-top: 0.8em !important;
margin-bottom: 0.4em !important;
color: #333 !important;
}
.output-markdown h3 {
font-size: 1.1em !important;
margin-top: 0.8em !important;
margin-bottom: 0.4em !important;
color: #333 !important;
}
.output-markdown code {
background: #f0f0f0 !important;
padding: 2px 4px !important;
border-radius: 3px !important;
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace !important;
font-size: 12px !important;
}
.output-markdown pre {
background: #f5f5f5 !important;
padding: 8px !important;
border-radius: 5px !important;
overflow-x: auto !important;
font-size: 12px !important;
}
.output-markdown ul, .output-markdown ol {
padding-left: 18px !important;
margin: 8px 0 !important;
}
.output-markdown li {
margin: 4px 0 !important;
}
.output-markdown p {
margin: 6px 0 !important;
}
.output-markdown strong {
font-weight: 600 !important;
}
footer {display: none !important}
"""
with gr.Blocks(css=css_styles, theme=gr.themes.Soft(primary_hue="purple")) as demo:
gr.Markdown(
"""
# 🎨 MMaDA-Parallel: Text+Image to Text+Image Generation
Real-time parallel generation with step-by-step visualization.
**Github:** [tyfeld/MMaDA-Parallel-A](https://github.com/tyfeld/MMaDA-Parallel-A)
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Input")
input_image = gr.Image(type="pil", label="Input Image")
prompt_text = gr.Textbox(
label="Editing Instruction",
lines=3,
value="Make the sky more dramatic with sunset colors",
placeholder="Enter your editing instruction..."
)
with gr.Accordion("Model", open=False):
model_path = gr.Textbox(
label="Model Path",
value="tyfeld/MMaDA-Parallel-A",
info="HuggingFace path or local directory"
)
vae_path = gr.Textbox(
label="VAE Path",
value="tyfeld/MMaDA-Parallel-A",
info="VQ-VAE checkpoint path"
)
with gr.Accordion("Parameters", open=False):
with gr.Row():
height = gr.Slider(256, 768, value=512, step=64, label="Height")
width = gr.Slider(256, 768, value=512, step=64, label="Width")
text_steps = gr.Slider(32, 512, value=128, step=32, label="Steps")
text_gen_length = gr.Slider(64, 512, value=256, step=32, label="Text Length")
text_block_length = gr.Slider(16, 128, value=32, step=16, label="Block Length")
with gr.Row():
cfg_scale = gr.Slider(0, 5, value=2.5, step=0.5, label="Text CFG")
cfg_img = gr.Slider(0, 8, value=4.0, step=0.5, label="Image CFG")
with gr.Row():
temperature = gr.Slider(0, 2, value=1.0, step=0.1, label="Image Temp")
text_temperature = gr.Slider(0, 2, value=0.7, step=0.1, label="Text Temp")
remasking_strategy = gr.Dropdown(
choices=["low_confidence", "random"],
value="low_confidence",
label="Remasking"
)
seed = gr.Slider(0, 10000, value=0, step=1, label="Seed (0=random)")
with gr.Accordion("Painting Mode", open=False):
painting_mode = gr.Dropdown(
choices=[None, "inpainting", "outpainting"],
value=None,
label="Mode"
)
with gr.Row():
mask_h_ratio = gr.Slider(0.1, 1.0, value=0.5, step=0.1, label="Mask H")
mask_w_ratio = gr.Slider(0.1, 1.0, value=0.5, step=0.1, label="Mask W")
generate_btn = gr.Button("πŸš€ Generate", variant="primary", size="lg")
with gr.Column(scale=2):
gr.Markdown("### Output")
status_text = gr.Textbox(label="Status", lines=2, interactive=False)
with gr.Row():
with gr.Column(scale=1.2):
output_text = gr.Markdown(
value="*Waiting...*",
label="Generated Text (β–“ = masked)",
show_label=True,
container=True,
elem_classes=["output-markdown"]
)
with gr.Column(scale=1):
output_image = gr.Image(label="Generated Image", type="pil", interactive=False)
generate_btn.click(
fn=generate_wrapper,
inputs=[
input_image, prompt_text, model_path, vae_path,
height, width, text_steps, text_gen_length, text_block_length,
cfg_scale, cfg_img, temperature, text_temperature,
remasking_strategy, painting_mode, mask_h_ratio, mask_w_ratio, seed
],
outputs=[output_text, output_image, status_text]
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="MMaDA-Parallel Gradio Demo")
parser.add_argument("--model_path", type=str, default="tyfeld/MMaDA-Parallel-A")
parser.add_argument("--vae_path", type=str, default="tyfeld/MMaDA-Parallel-A")
parser.add_argument("--share", action="store_true")
parser.add_argument("--port", type=int, default=7860)
args = parser.parse_args()
print("Loading model...")
load_status = load_model_and_vae(args.model_path, args.vae_path)
print(load_status)
demo.launch(share=args.share, server_name="0.0.0.0", server_port=args.port)