Spaces:
Runtime error
Runtime error
import torch | |
import sys | |
sys.path.append(".") | |
sys.path.append("..") | |
from editings import ganspace, sefa | |
from utils.common import tensor2im | |
class LatentEditor(object): | |
def __init__(self, stylegan_generator, is_cars=False): | |
self.generator = stylegan_generator | |
self.is_cars = is_cars # Since the cars StyleGAN output is 384x512, there is a need to crop the 512x512 output. | |
def apply_ganspace(self, latent, ganspace_pca, edit_directions): | |
edit_latents = ganspace.edit(latent, ganspace_pca, edit_directions) | |
return self._latents_to_image(edit_latents) | |
def apply_interfacegan(self, latent, direction, factor=1, factor_range=None): | |
edit_latents = [] | |
if factor_range is not None: # Apply a range of editing factors. for example, (-5, 5) | |
for f in range(*factor_range): | |
edit_latent = latent + f * direction | |
edit_latents.append(edit_latent) | |
edit_latents = torch.cat(edit_latents) | |
else: | |
edit_latents = latent + factor * direction | |
return self._latents_to_image(edit_latents) | |
def apply_sefa(self, latent, indices=[2, 3, 4, 5], **kwargs): | |
edit_latents = sefa.edit(self.generator, latent, indices, **kwargs) | |
return self._latents_to_image(edit_latents) | |
# Currently, in order to apply StyleFlow editings, one should run inference, | |
# save the latent codes and load them form the official StyleFlow repository. | |
# def apply_styleflow(self): | |
# pass | |
def _latents_to_image(self, latents): | |
with torch.no_grad(): | |
images, _ = self.generator([latents], randomize_noise=False, input_is_latent=True) | |
if self.is_cars: | |
images = images[:, :, 64:448, :] # 512x512 -> 384x512 | |
horizontal_concat_image = torch.cat(list(images), 2) | |
final_image = tensor2im(horizontal_concat_image) | |
return final_image | |