JoJoGAN / e4e /training /coach.py
AK391
update
c2f174c
raw
history blame
19.8 kB
import os
import random
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import torch
from torch import nn, autograd
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from utils import common, train_utils
from criteria import id_loss, moco_loss
from configs import data_configs
from datasets.images_dataset import ImagesDataset
from criteria.lpips.lpips import LPIPS
from models.psp import pSp
from models.latent_codes_pool import LatentCodesPool
from models.discriminator import LatentCodesDiscriminator
from models.encoders.psp_encoders import ProgressiveStage
from training.ranger import Ranger
random.seed(0)
torch.manual_seed(0)
class Coach:
def __init__(self, opts, prev_train_checkpoint=None):
self.opts = opts
self.global_step = 0
self.device = 'cuda:0'
self.opts.device = self.device
# Initialize network
self.net = pSp(self.opts).to(self.device)
# Initialize loss
if self.opts.lpips_lambda > 0:
self.lpips_loss = LPIPS(net_type=self.opts.lpips_type).to(self.device).eval()
if self.opts.id_lambda > 0:
if 'ffhq' in self.opts.dataset_type or 'celeb' in self.opts.dataset_type:
self.id_loss = id_loss.IDLoss().to(self.device).eval()
else:
self.id_loss = moco_loss.MocoLoss(opts).to(self.device).eval()
self.mse_loss = nn.MSELoss().to(self.device).eval()
# Initialize optimizer
self.optimizer = self.configure_optimizers()
# Initialize discriminator
if self.opts.w_discriminator_lambda > 0:
self.discriminator = LatentCodesDiscriminator(512, 4).to(self.device)
self.discriminator_optimizer = torch.optim.Adam(list(self.discriminator.parameters()),
lr=opts.w_discriminator_lr)
self.real_w_pool = LatentCodesPool(self.opts.w_pool_size)
self.fake_w_pool = LatentCodesPool(self.opts.w_pool_size)
# Initialize dataset
self.train_dataset, self.test_dataset = self.configure_datasets()
self.train_dataloader = DataLoader(self.train_dataset,
batch_size=self.opts.batch_size,
shuffle=True,
num_workers=int(self.opts.workers),
drop_last=True)
self.test_dataloader = DataLoader(self.test_dataset,
batch_size=self.opts.test_batch_size,
shuffle=False,
num_workers=int(self.opts.test_workers),
drop_last=True)
# Initialize logger
log_dir = os.path.join(opts.exp_dir, 'logs')
os.makedirs(log_dir, exist_ok=True)
self.logger = SummaryWriter(log_dir=log_dir)
# Initialize checkpoint dir
self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.best_val_loss = None
if self.opts.save_interval is None:
self.opts.save_interval = self.opts.max_steps
if prev_train_checkpoint is not None:
self.load_from_train_checkpoint(prev_train_checkpoint)
prev_train_checkpoint = None
def load_from_train_checkpoint(self, ckpt):
print('Loading previous training data...')
self.global_step = ckpt['global_step'] + 1
self.best_val_loss = ckpt['best_val_loss']
self.net.load_state_dict(ckpt['state_dict'])
if self.opts.keep_optimizer:
self.optimizer.load_state_dict(ckpt['optimizer'])
if self.opts.w_discriminator_lambda > 0:
self.discriminator.load_state_dict(ckpt['discriminator_state_dict'])
self.discriminator_optimizer.load_state_dict(ckpt['discriminator_optimizer_state_dict'])
if self.opts.progressive_steps:
self.check_for_progressive_training_update(is_resume_from_ckpt=True)
print(f'Resuming training from step {self.global_step}')
def train(self):
self.net.train()
if self.opts.progressive_steps:
self.check_for_progressive_training_update()
while self.global_step < self.opts.max_steps:
for batch_idx, batch in enumerate(self.train_dataloader):
loss_dict = {}
if self.is_training_discriminator():
loss_dict = self.train_discriminator(batch)
x, y, y_hat, latent = self.forward(batch)
loss, encoder_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent)
loss_dict = {**loss_dict, **encoder_loss_dict}
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# Logging related
if self.global_step % self.opts.image_interval == 0 or (
self.global_step < 1000 and self.global_step % 25 == 0):
self.parse_and_log_images(id_logs, x, y, y_hat, title='images/train/faces')
if self.global_step % self.opts.board_interval == 0:
self.print_metrics(loss_dict, prefix='train')
self.log_metrics(loss_dict, prefix='train')
# Validation related
val_loss_dict = None
if self.global_step % self.opts.val_interval == 0 or self.global_step == self.opts.max_steps:
val_loss_dict = self.validate()
if val_loss_dict and (self.best_val_loss is None or val_loss_dict['loss'] < self.best_val_loss):
self.best_val_loss = val_loss_dict['loss']
self.checkpoint_me(val_loss_dict, is_best=True)
if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps:
if val_loss_dict is not None:
self.checkpoint_me(val_loss_dict, is_best=False)
else:
self.checkpoint_me(loss_dict, is_best=False)
if self.global_step == self.opts.max_steps:
print('OMG, finished training!')
break
self.global_step += 1
if self.opts.progressive_steps:
self.check_for_progressive_training_update()
def check_for_progressive_training_update(self, is_resume_from_ckpt=False):
for i in range(len(self.opts.progressive_steps)):
if is_resume_from_ckpt and self.global_step >= self.opts.progressive_steps[i]: # Case checkpoint
self.net.encoder.set_progressive_stage(ProgressiveStage(i))
if self.global_step == self.opts.progressive_steps[i]: # Case training reached progressive step
self.net.encoder.set_progressive_stage(ProgressiveStage(i))
def validate(self):
self.net.eval()
agg_loss_dict = []
for batch_idx, batch in enumerate(self.test_dataloader):
cur_loss_dict = {}
if self.is_training_discriminator():
cur_loss_dict = self.validate_discriminator(batch)
with torch.no_grad():
x, y, y_hat, latent = self.forward(batch)
loss, cur_encoder_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent)
cur_loss_dict = {**cur_loss_dict, **cur_encoder_loss_dict}
agg_loss_dict.append(cur_loss_dict)
# Logging related
self.parse_and_log_images(id_logs, x, y, y_hat,
title='images/test/faces',
subscript='{:04d}'.format(batch_idx))
# For first step just do sanity test on small amount of data
if self.global_step == 0 and batch_idx >= 4:
self.net.train()
return None # Do not log, inaccurate in first batch
loss_dict = train_utils.aggregate_loss_dict(agg_loss_dict)
self.log_metrics(loss_dict, prefix='test')
self.print_metrics(loss_dict, prefix='test')
self.net.train()
return loss_dict
def checkpoint_me(self, loss_dict, is_best):
save_name = 'best_model.pt' if is_best else 'iteration_{}.pt'.format(self.global_step)
save_dict = self.__get_save_dict()
checkpoint_path = os.path.join(self.checkpoint_dir, save_name)
torch.save(save_dict, checkpoint_path)
with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f:
if is_best:
f.write(
'**Best**: Step - {}, Loss - {:.3f} \n{}\n'.format(self.global_step, self.best_val_loss, loss_dict))
else:
f.write('Step - {}, \n{}\n'.format(self.global_step, loss_dict))
def configure_optimizers(self):
params = list(self.net.encoder.parameters())
if self.opts.train_decoder:
params += list(self.net.decoder.parameters())
else:
self.requires_grad(self.net.decoder, False)
if self.opts.optim_name == 'adam':
optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate)
else:
optimizer = Ranger(params, lr=self.opts.learning_rate)
return optimizer
def configure_datasets(self):
if self.opts.dataset_type not in data_configs.DATASETS.keys():
Exception('{} is not a valid dataset_type'.format(self.opts.dataset_type))
print('Loading dataset for {}'.format(self.opts.dataset_type))
dataset_args = data_configs.DATASETS[self.opts.dataset_type]
transforms_dict = dataset_args['transforms'](self.opts).get_transforms()
train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'],
target_root=dataset_args['train_target_root'],
source_transform=transforms_dict['transform_source'],
target_transform=transforms_dict['transform_gt_train'],
opts=self.opts)
test_dataset = ImagesDataset(source_root=dataset_args['test_source_root'],
target_root=dataset_args['test_target_root'],
source_transform=transforms_dict['transform_source'],
target_transform=transforms_dict['transform_test'],
opts=self.opts)
print("Number of training samples: {}".format(len(train_dataset)))
print("Number of test samples: {}".format(len(test_dataset)))
return train_dataset, test_dataset
def calc_loss(self, x, y, y_hat, latent):
loss_dict = {}
loss = 0.0
id_logs = None
if self.is_training_discriminator(): # Adversarial loss
loss_disc = 0.
dims_to_discriminate = self.get_dims_to_discriminate() if self.is_progressive_training() else \
list(range(self.net.decoder.n_latent))
for i in dims_to_discriminate:
w = latent[:, i, :]
fake_pred = self.discriminator(w)
loss_disc += F.softplus(-fake_pred).mean()
loss_disc /= len(dims_to_discriminate)
loss_dict['encoder_discriminator_loss'] = float(loss_disc)
loss += self.opts.w_discriminator_lambda * loss_disc
if self.opts.progressive_steps and self.net.encoder.progressive_stage.value != 18: # delta regularization loss
total_delta_loss = 0
deltas_latent_dims = self.net.encoder.get_deltas_starting_dimensions()
first_w = latent[:, 0, :]
for i in range(1, self.net.encoder.progressive_stage.value + 1):
curr_dim = deltas_latent_dims[i]
delta = latent[:, curr_dim, :] - first_w
delta_loss = torch.norm(delta, self.opts.delta_norm, dim=1).mean()
loss_dict[f"delta{i}_loss"] = float(delta_loss)
total_delta_loss += delta_loss
loss_dict['total_delta_loss'] = float(total_delta_loss)
loss += self.opts.delta_norm_lambda * total_delta_loss
if self.opts.id_lambda > 0: # Similarity loss
loss_id, sim_improvement, id_logs = self.id_loss(y_hat, y, x)
loss_dict['loss_id'] = float(loss_id)
loss_dict['id_improve'] = float(sim_improvement)
loss += loss_id * self.opts.id_lambda
if self.opts.l2_lambda > 0:
loss_l2 = F.mse_loss(y_hat, y)
loss_dict['loss_l2'] = float(loss_l2)
loss += loss_l2 * self.opts.l2_lambda
if self.opts.lpips_lambda > 0:
loss_lpips = self.lpips_loss(y_hat, y)
loss_dict['loss_lpips'] = float(loss_lpips)
loss += loss_lpips * self.opts.lpips_lambda
loss_dict['loss'] = float(loss)
return loss, loss_dict, id_logs
def forward(self, batch):
x, y = batch
x, y = x.to(self.device).float(), y.to(self.device).float()
y_hat, latent = self.net.forward(x, return_latents=True)
if self.opts.dataset_type == "cars_encode":
y_hat = y_hat[:, :, 32:224, :]
return x, y, y_hat, latent
def log_metrics(self, metrics_dict, prefix):
for key, value in metrics_dict.items():
self.logger.add_scalar('{}/{}'.format(prefix, key), value, self.global_step)
def print_metrics(self, metrics_dict, prefix):
print('Metrics for {}, step {}'.format(prefix, self.global_step))
for key, value in metrics_dict.items():
print('\t{} = '.format(key), value)
def parse_and_log_images(self, id_logs, x, y, y_hat, title, subscript=None, display_count=2):
im_data = []
for i in range(display_count):
cur_im_data = {
'input_face': common.log_input_image(x[i], self.opts),
'target_face': common.tensor2im(y[i]),
'output_face': common.tensor2im(y_hat[i]),
}
if id_logs is not None:
for key in id_logs[i]:
cur_im_data[key] = id_logs[i][key]
im_data.append(cur_im_data)
self.log_images(title, im_data=im_data, subscript=subscript)
def log_images(self, name, im_data, subscript=None, log_latest=False):
fig = common.vis_faces(im_data)
step = self.global_step
if log_latest:
step = 0
if subscript:
path = os.path.join(self.logger.log_dir, name, '{}_{:04d}.jpg'.format(subscript, step))
else:
path = os.path.join(self.logger.log_dir, name, '{:04d}.jpg'.format(step))
os.makedirs(os.path.dirname(path), exist_ok=True)
fig.savefig(path)
plt.close(fig)
def __get_save_dict(self):
save_dict = {
'state_dict': self.net.state_dict(),
'opts': vars(self.opts)
}
# save the latent avg in state_dict for inference if truncation of w was used during training
if self.opts.start_from_latent_avg:
save_dict['latent_avg'] = self.net.latent_avg
if self.opts.save_training_data: # Save necessary information to enable training continuation from checkpoint
save_dict['global_step'] = self.global_step
save_dict['optimizer'] = self.optimizer.state_dict()
save_dict['best_val_loss'] = self.best_val_loss
if self.opts.w_discriminator_lambda > 0:
save_dict['discriminator_state_dict'] = self.discriminator.state_dict()
save_dict['discriminator_optimizer_state_dict'] = self.discriminator_optimizer.state_dict()
return save_dict
def get_dims_to_discriminate(self):
deltas_starting_dimensions = self.net.encoder.get_deltas_starting_dimensions()
return deltas_starting_dimensions[:self.net.encoder.progressive_stage.value + 1]
def is_progressive_training(self):
return self.opts.progressive_steps is not None
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Discriminator ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def is_training_discriminator(self):
return self.opts.w_discriminator_lambda > 0
@staticmethod
def discriminator_loss(real_pred, fake_pred, loss_dict):
real_loss = F.softplus(-real_pred).mean()
fake_loss = F.softplus(fake_pred).mean()
loss_dict['d_real_loss'] = float(real_loss)
loss_dict['d_fake_loss'] = float(fake_loss)
return real_loss + fake_loss
@staticmethod
def discriminator_r1_loss(real_pred, real_w):
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_w, create_graph=True
)
grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
@staticmethod
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def train_discriminator(self, batch):
loss_dict = {}
x, _ = batch
x = x.to(self.device).float()
self.requires_grad(self.discriminator, True)
with torch.no_grad():
real_w, fake_w = self.sample_real_and_fake_latents(x)
real_pred = self.discriminator(real_w)
fake_pred = self.discriminator(fake_w)
loss = self.discriminator_loss(real_pred, fake_pred, loss_dict)
loss_dict['discriminator_loss'] = float(loss)
self.discriminator_optimizer.zero_grad()
loss.backward()
self.discriminator_optimizer.step()
# r1 regularization
d_regularize = self.global_step % self.opts.d_reg_every == 0
if d_regularize:
real_w = real_w.detach()
real_w.requires_grad = True
real_pred = self.discriminator(real_w)
r1_loss = self.discriminator_r1_loss(real_pred, real_w)
self.discriminator.zero_grad()
r1_final_loss = self.opts.r1 / 2 * r1_loss * self.opts.d_reg_every + 0 * real_pred[0]
r1_final_loss.backward()
self.discriminator_optimizer.step()
loss_dict['discriminator_r1_loss'] = float(r1_final_loss)
# Reset to previous state
self.requires_grad(self.discriminator, False)
return loss_dict
def validate_discriminator(self, test_batch):
with torch.no_grad():
loss_dict = {}
x, _ = test_batch
x = x.to(self.device).float()
real_w, fake_w = self.sample_real_and_fake_latents(x)
real_pred = self.discriminator(real_w)
fake_pred = self.discriminator(fake_w)
loss = self.discriminator_loss(real_pred, fake_pred, loss_dict)
loss_dict['discriminator_loss'] = float(loss)
return loss_dict
def sample_real_and_fake_latents(self, x):
sample_z = torch.randn(self.opts.batch_size, 512, device=self.device)
real_w = self.net.decoder.get_latent(sample_z)
fake_w = self.net.encoder(x)
if self.is_progressive_training(): # When progressive training, feed only unique w's
dims_to_discriminate = self.get_dims_to_discriminate()
fake_w = fake_w[:, dims_to_discriminate, :]
if self.opts.use_w_pool:
real_w = self.real_w_pool.query(real_w)
fake_w = self.fake_w_pool.query(fake_w)
if fake_w.ndim == 3:
fake_w = fake_w[:, 0, :]
return real_w, fake_w