Spaces:
Runtime error
Runtime error
import os | |
import random | |
import matplotlib | |
import matplotlib.pyplot as plt | |
matplotlib.use('Agg') | |
import torch | |
from torch import nn, autograd | |
from torch.utils.data import DataLoader | |
from torch.utils.tensorboard import SummaryWriter | |
import torch.nn.functional as F | |
from utils import common, train_utils | |
from criteria import id_loss, moco_loss | |
from configs import data_configs | |
from datasets.images_dataset import ImagesDataset | |
from criteria.lpips.lpips import LPIPS | |
from models.psp import pSp | |
from models.latent_codes_pool import LatentCodesPool | |
from models.discriminator import LatentCodesDiscriminator | |
from models.encoders.psp_encoders import ProgressiveStage | |
from training.ranger import Ranger | |
random.seed(0) | |
torch.manual_seed(0) | |
class Coach: | |
def __init__(self, opts, prev_train_checkpoint=None): | |
self.opts = opts | |
self.global_step = 0 | |
self.device = 'cuda:0' | |
self.opts.device = self.device | |
# Initialize network | |
self.net = pSp(self.opts).to(self.device) | |
# Initialize loss | |
if self.opts.lpips_lambda > 0: | |
self.lpips_loss = LPIPS(net_type=self.opts.lpips_type).to(self.device).eval() | |
if self.opts.id_lambda > 0: | |
if 'ffhq' in self.opts.dataset_type or 'celeb' in self.opts.dataset_type: | |
self.id_loss = id_loss.IDLoss().to(self.device).eval() | |
else: | |
self.id_loss = moco_loss.MocoLoss(opts).to(self.device).eval() | |
self.mse_loss = nn.MSELoss().to(self.device).eval() | |
# Initialize optimizer | |
self.optimizer = self.configure_optimizers() | |
# Initialize discriminator | |
if self.opts.w_discriminator_lambda > 0: | |
self.discriminator = LatentCodesDiscriminator(512, 4).to(self.device) | |
self.discriminator_optimizer = torch.optim.Adam(list(self.discriminator.parameters()), | |
lr=opts.w_discriminator_lr) | |
self.real_w_pool = LatentCodesPool(self.opts.w_pool_size) | |
self.fake_w_pool = LatentCodesPool(self.opts.w_pool_size) | |
# Initialize dataset | |
self.train_dataset, self.test_dataset = self.configure_datasets() | |
self.train_dataloader = DataLoader(self.train_dataset, | |
batch_size=self.opts.batch_size, | |
shuffle=True, | |
num_workers=int(self.opts.workers), | |
drop_last=True) | |
self.test_dataloader = DataLoader(self.test_dataset, | |
batch_size=self.opts.test_batch_size, | |
shuffle=False, | |
num_workers=int(self.opts.test_workers), | |
drop_last=True) | |
# Initialize logger | |
log_dir = os.path.join(opts.exp_dir, 'logs') | |
os.makedirs(log_dir, exist_ok=True) | |
self.logger = SummaryWriter(log_dir=log_dir) | |
# Initialize checkpoint dir | |
self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints') | |
os.makedirs(self.checkpoint_dir, exist_ok=True) | |
self.best_val_loss = None | |
if self.opts.save_interval is None: | |
self.opts.save_interval = self.opts.max_steps | |
if prev_train_checkpoint is not None: | |
self.load_from_train_checkpoint(prev_train_checkpoint) | |
prev_train_checkpoint = None | |
def load_from_train_checkpoint(self, ckpt): | |
print('Loading previous training data...') | |
self.global_step = ckpt['global_step'] + 1 | |
self.best_val_loss = ckpt['best_val_loss'] | |
self.net.load_state_dict(ckpt['state_dict']) | |
if self.opts.keep_optimizer: | |
self.optimizer.load_state_dict(ckpt['optimizer']) | |
if self.opts.w_discriminator_lambda > 0: | |
self.discriminator.load_state_dict(ckpt['discriminator_state_dict']) | |
self.discriminator_optimizer.load_state_dict(ckpt['discriminator_optimizer_state_dict']) | |
if self.opts.progressive_steps: | |
self.check_for_progressive_training_update(is_resume_from_ckpt=True) | |
print(f'Resuming training from step {self.global_step}') | |
def train(self): | |
self.net.train() | |
if self.opts.progressive_steps: | |
self.check_for_progressive_training_update() | |
while self.global_step < self.opts.max_steps: | |
for batch_idx, batch in enumerate(self.train_dataloader): | |
loss_dict = {} | |
if self.is_training_discriminator(): | |
loss_dict = self.train_discriminator(batch) | |
x, y, y_hat, latent = self.forward(batch) | |
loss, encoder_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent) | |
loss_dict = {**loss_dict, **encoder_loss_dict} | |
self.optimizer.zero_grad() | |
loss.backward() | |
self.optimizer.step() | |
# Logging related | |
if self.global_step % self.opts.image_interval == 0 or ( | |
self.global_step < 1000 and self.global_step % 25 == 0): | |
self.parse_and_log_images(id_logs, x, y, y_hat, title='images/train/faces') | |
if self.global_step % self.opts.board_interval == 0: | |
self.print_metrics(loss_dict, prefix='train') | |
self.log_metrics(loss_dict, prefix='train') | |
# Validation related | |
val_loss_dict = None | |
if self.global_step % self.opts.val_interval == 0 or self.global_step == self.opts.max_steps: | |
val_loss_dict = self.validate() | |
if val_loss_dict and (self.best_val_loss is None or val_loss_dict['loss'] < self.best_val_loss): | |
self.best_val_loss = val_loss_dict['loss'] | |
self.checkpoint_me(val_loss_dict, is_best=True) | |
if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps: | |
if val_loss_dict is not None: | |
self.checkpoint_me(val_loss_dict, is_best=False) | |
else: | |
self.checkpoint_me(loss_dict, is_best=False) | |
if self.global_step == self.opts.max_steps: | |
print('OMG, finished training!') | |
break | |
self.global_step += 1 | |
if self.opts.progressive_steps: | |
self.check_for_progressive_training_update() | |
def check_for_progressive_training_update(self, is_resume_from_ckpt=False): | |
for i in range(len(self.opts.progressive_steps)): | |
if is_resume_from_ckpt and self.global_step >= self.opts.progressive_steps[i]: # Case checkpoint | |
self.net.encoder.set_progressive_stage(ProgressiveStage(i)) | |
if self.global_step == self.opts.progressive_steps[i]: # Case training reached progressive step | |
self.net.encoder.set_progressive_stage(ProgressiveStage(i)) | |
def validate(self): | |
self.net.eval() | |
agg_loss_dict = [] | |
for batch_idx, batch in enumerate(self.test_dataloader): | |
cur_loss_dict = {} | |
if self.is_training_discriminator(): | |
cur_loss_dict = self.validate_discriminator(batch) | |
with torch.no_grad(): | |
x, y, y_hat, latent = self.forward(batch) | |
loss, cur_encoder_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent) | |
cur_loss_dict = {**cur_loss_dict, **cur_encoder_loss_dict} | |
agg_loss_dict.append(cur_loss_dict) | |
# Logging related | |
self.parse_and_log_images(id_logs, x, y, y_hat, | |
title='images/test/faces', | |
subscript='{:04d}'.format(batch_idx)) | |
# For first step just do sanity test on small amount of data | |
if self.global_step == 0 and batch_idx >= 4: | |
self.net.train() | |
return None # Do not log, inaccurate in first batch | |
loss_dict = train_utils.aggregate_loss_dict(agg_loss_dict) | |
self.log_metrics(loss_dict, prefix='test') | |
self.print_metrics(loss_dict, prefix='test') | |
self.net.train() | |
return loss_dict | |
def checkpoint_me(self, loss_dict, is_best): | |
save_name = 'best_model.pt' if is_best else 'iteration_{}.pt'.format(self.global_step) | |
save_dict = self.__get_save_dict() | |
checkpoint_path = os.path.join(self.checkpoint_dir, save_name) | |
torch.save(save_dict, checkpoint_path) | |
with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f: | |
if is_best: | |
f.write( | |
'**Best**: Step - {}, Loss - {:.3f} \n{}\n'.format(self.global_step, self.best_val_loss, loss_dict)) | |
else: | |
f.write('Step - {}, \n{}\n'.format(self.global_step, loss_dict)) | |
def configure_optimizers(self): | |
params = list(self.net.encoder.parameters()) | |
if self.opts.train_decoder: | |
params += list(self.net.decoder.parameters()) | |
else: | |
self.requires_grad(self.net.decoder, False) | |
if self.opts.optim_name == 'adam': | |
optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate) | |
else: | |
optimizer = Ranger(params, lr=self.opts.learning_rate) | |
return optimizer | |
def configure_datasets(self): | |
if self.opts.dataset_type not in data_configs.DATASETS.keys(): | |
Exception('{} is not a valid dataset_type'.format(self.opts.dataset_type)) | |
print('Loading dataset for {}'.format(self.opts.dataset_type)) | |
dataset_args = data_configs.DATASETS[self.opts.dataset_type] | |
transforms_dict = dataset_args['transforms'](self.opts).get_transforms() | |
train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'], | |
target_root=dataset_args['train_target_root'], | |
source_transform=transforms_dict['transform_source'], | |
target_transform=transforms_dict['transform_gt_train'], | |
opts=self.opts) | |
test_dataset = ImagesDataset(source_root=dataset_args['test_source_root'], | |
target_root=dataset_args['test_target_root'], | |
source_transform=transforms_dict['transform_source'], | |
target_transform=transforms_dict['transform_test'], | |
opts=self.opts) | |
print("Number of training samples: {}".format(len(train_dataset))) | |
print("Number of test samples: {}".format(len(test_dataset))) | |
return train_dataset, test_dataset | |
def calc_loss(self, x, y, y_hat, latent): | |
loss_dict = {} | |
loss = 0.0 | |
id_logs = None | |
if self.is_training_discriminator(): # Adversarial loss | |
loss_disc = 0. | |
dims_to_discriminate = self.get_dims_to_discriminate() if self.is_progressive_training() else \ | |
list(range(self.net.decoder.n_latent)) | |
for i in dims_to_discriminate: | |
w = latent[:, i, :] | |
fake_pred = self.discriminator(w) | |
loss_disc += F.softplus(-fake_pred).mean() | |
loss_disc /= len(dims_to_discriminate) | |
loss_dict['encoder_discriminator_loss'] = float(loss_disc) | |
loss += self.opts.w_discriminator_lambda * loss_disc | |
if self.opts.progressive_steps and self.net.encoder.progressive_stage.value != 18: # delta regularization loss | |
total_delta_loss = 0 | |
deltas_latent_dims = self.net.encoder.get_deltas_starting_dimensions() | |
first_w = latent[:, 0, :] | |
for i in range(1, self.net.encoder.progressive_stage.value + 1): | |
curr_dim = deltas_latent_dims[i] | |
delta = latent[:, curr_dim, :] - first_w | |
delta_loss = torch.norm(delta, self.opts.delta_norm, dim=1).mean() | |
loss_dict[f"delta{i}_loss"] = float(delta_loss) | |
total_delta_loss += delta_loss | |
loss_dict['total_delta_loss'] = float(total_delta_loss) | |
loss += self.opts.delta_norm_lambda * total_delta_loss | |
if self.opts.id_lambda > 0: # Similarity loss | |
loss_id, sim_improvement, id_logs = self.id_loss(y_hat, y, x) | |
loss_dict['loss_id'] = float(loss_id) | |
loss_dict['id_improve'] = float(sim_improvement) | |
loss += loss_id * self.opts.id_lambda | |
if self.opts.l2_lambda > 0: | |
loss_l2 = F.mse_loss(y_hat, y) | |
loss_dict['loss_l2'] = float(loss_l2) | |
loss += loss_l2 * self.opts.l2_lambda | |
if self.opts.lpips_lambda > 0: | |
loss_lpips = self.lpips_loss(y_hat, y) | |
loss_dict['loss_lpips'] = float(loss_lpips) | |
loss += loss_lpips * self.opts.lpips_lambda | |
loss_dict['loss'] = float(loss) | |
return loss, loss_dict, id_logs | |
def forward(self, batch): | |
x, y = batch | |
x, y = x.to(self.device).float(), y.to(self.device).float() | |
y_hat, latent = self.net.forward(x, return_latents=True) | |
if self.opts.dataset_type == "cars_encode": | |
y_hat = y_hat[:, :, 32:224, :] | |
return x, y, y_hat, latent | |
def log_metrics(self, metrics_dict, prefix): | |
for key, value in metrics_dict.items(): | |
self.logger.add_scalar('{}/{}'.format(prefix, key), value, self.global_step) | |
def print_metrics(self, metrics_dict, prefix): | |
print('Metrics for {}, step {}'.format(prefix, self.global_step)) | |
for key, value in metrics_dict.items(): | |
print('\t{} = '.format(key), value) | |
def parse_and_log_images(self, id_logs, x, y, y_hat, title, subscript=None, display_count=2): | |
im_data = [] | |
for i in range(display_count): | |
cur_im_data = { | |
'input_face': common.log_input_image(x[i], self.opts), | |
'target_face': common.tensor2im(y[i]), | |
'output_face': common.tensor2im(y_hat[i]), | |
} | |
if id_logs is not None: | |
for key in id_logs[i]: | |
cur_im_data[key] = id_logs[i][key] | |
im_data.append(cur_im_data) | |
self.log_images(title, im_data=im_data, subscript=subscript) | |
def log_images(self, name, im_data, subscript=None, log_latest=False): | |
fig = common.vis_faces(im_data) | |
step = self.global_step | |
if log_latest: | |
step = 0 | |
if subscript: | |
path = os.path.join(self.logger.log_dir, name, '{}_{:04d}.jpg'.format(subscript, step)) | |
else: | |
path = os.path.join(self.logger.log_dir, name, '{:04d}.jpg'.format(step)) | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
fig.savefig(path) | |
plt.close(fig) | |
def __get_save_dict(self): | |
save_dict = { | |
'state_dict': self.net.state_dict(), | |
'opts': vars(self.opts) | |
} | |
# save the latent avg in state_dict for inference if truncation of w was used during training | |
if self.opts.start_from_latent_avg: | |
save_dict['latent_avg'] = self.net.latent_avg | |
if self.opts.save_training_data: # Save necessary information to enable training continuation from checkpoint | |
save_dict['global_step'] = self.global_step | |
save_dict['optimizer'] = self.optimizer.state_dict() | |
save_dict['best_val_loss'] = self.best_val_loss | |
if self.opts.w_discriminator_lambda > 0: | |
save_dict['discriminator_state_dict'] = self.discriminator.state_dict() | |
save_dict['discriminator_optimizer_state_dict'] = self.discriminator_optimizer.state_dict() | |
return save_dict | |
def get_dims_to_discriminate(self): | |
deltas_starting_dimensions = self.net.encoder.get_deltas_starting_dimensions() | |
return deltas_starting_dimensions[:self.net.encoder.progressive_stage.value + 1] | |
def is_progressive_training(self): | |
return self.opts.progressive_steps is not None | |
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Discriminator ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # | |
def is_training_discriminator(self): | |
return self.opts.w_discriminator_lambda > 0 | |
def discriminator_loss(real_pred, fake_pred, loss_dict): | |
real_loss = F.softplus(-real_pred).mean() | |
fake_loss = F.softplus(fake_pred).mean() | |
loss_dict['d_real_loss'] = float(real_loss) | |
loss_dict['d_fake_loss'] = float(fake_loss) | |
return real_loss + fake_loss | |
def discriminator_r1_loss(real_pred, real_w): | |
grad_real, = autograd.grad( | |
outputs=real_pred.sum(), inputs=real_w, create_graph=True | |
) | |
grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean() | |
return grad_penalty | |
def requires_grad(model, flag=True): | |
for p in model.parameters(): | |
p.requires_grad = flag | |
def train_discriminator(self, batch): | |
loss_dict = {} | |
x, _ = batch | |
x = x.to(self.device).float() | |
self.requires_grad(self.discriminator, True) | |
with torch.no_grad(): | |
real_w, fake_w = self.sample_real_and_fake_latents(x) | |
real_pred = self.discriminator(real_w) | |
fake_pred = self.discriminator(fake_w) | |
loss = self.discriminator_loss(real_pred, fake_pred, loss_dict) | |
loss_dict['discriminator_loss'] = float(loss) | |
self.discriminator_optimizer.zero_grad() | |
loss.backward() | |
self.discriminator_optimizer.step() | |
# r1 regularization | |
d_regularize = self.global_step % self.opts.d_reg_every == 0 | |
if d_regularize: | |
real_w = real_w.detach() | |
real_w.requires_grad = True | |
real_pred = self.discriminator(real_w) | |
r1_loss = self.discriminator_r1_loss(real_pred, real_w) | |
self.discriminator.zero_grad() | |
r1_final_loss = self.opts.r1 / 2 * r1_loss * self.opts.d_reg_every + 0 * real_pred[0] | |
r1_final_loss.backward() | |
self.discriminator_optimizer.step() | |
loss_dict['discriminator_r1_loss'] = float(r1_final_loss) | |
# Reset to previous state | |
self.requires_grad(self.discriminator, False) | |
return loss_dict | |
def validate_discriminator(self, test_batch): | |
with torch.no_grad(): | |
loss_dict = {} | |
x, _ = test_batch | |
x = x.to(self.device).float() | |
real_w, fake_w = self.sample_real_and_fake_latents(x) | |
real_pred = self.discriminator(real_w) | |
fake_pred = self.discriminator(fake_w) | |
loss = self.discriminator_loss(real_pred, fake_pred, loss_dict) | |
loss_dict['discriminator_loss'] = float(loss) | |
return loss_dict | |
def sample_real_and_fake_latents(self, x): | |
sample_z = torch.randn(self.opts.batch_size, 512, device=self.device) | |
real_w = self.net.decoder.get_latent(sample_z) | |
fake_w = self.net.encoder(x) | |
if self.is_progressive_training(): # When progressive training, feed only unique w's | |
dims_to_discriminate = self.get_dims_to_discriminate() | |
fake_w = fake_w[:, dims_to_discriminate, :] | |
if self.opts.use_w_pool: | |
real_w = self.real_w_pool.query(real_w) | |
fake_w = self.fake_w_pool.query(fake_w) | |
if fake_w.ndim == 3: | |
fake_w = fake_w[:, 0, :] | |
return real_w, fake_w | |