Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torchvision.models.detection.backbone_utils as backbone_utils | |
import torchvision.models._utils as _utils | |
import torch.nn.functional as F | |
from collections import OrderedDict | |
from facemodels.net import MobileNetV1 as MobileNetV1 | |
from facemodels.net import FPN as FPN | |
from facemodels.net import SSH as SSH | |
class ClassHead(nn.Module): | |
def __init__(self,inchannels=512,num_anchors=3): | |
super(ClassHead,self).__init__() | |
self.num_anchors = num_anchors | |
self.conv1x1 = nn.Conv2d(inchannels,self.num_anchors*2,kernel_size=(1,1),stride=1,padding=0) | |
def forward(self,x): | |
out = self.conv1x1(x) | |
out = out.permute(0,2,3,1).contiguous() | |
return out.view(out.shape[0], -1, 2) | |
class BboxHead(nn.Module): | |
def __init__(self,inchannels=512,num_anchors=3): | |
super(BboxHead,self).__init__() | |
self.conv1x1 = nn.Conv2d(inchannels,num_anchors*4,kernel_size=(1,1),stride=1,padding=0) | |
def forward(self,x): | |
out = self.conv1x1(x) | |
out = out.permute(0,2,3,1).contiguous() | |
return out.view(out.shape[0], -1, 4) | |
class LandmarkHead(nn.Module): | |
def __init__(self,inchannels=512,num_anchors=3): | |
super(LandmarkHead,self).__init__() | |
self.conv1x1 = nn.Conv2d(inchannels,num_anchors*10,kernel_size=(1,1),stride=1,padding=0) | |
def forward(self,x): | |
out = self.conv1x1(x) | |
out = out.permute(0,2,3,1).contiguous() | |
return out.view(out.shape[0], -1, 10) | |
class RetinaFace(nn.Module): | |
def __init__(self, cfg = None, phase = 'train'): | |
""" | |
:param cfg: Network related settings. | |
:param phase: train or test. | |
""" | |
super(RetinaFace,self).__init__() | |
self.phase = phase | |
backbone = None | |
if cfg['name'] == 'mobilenet0.25': | |
backbone = MobileNetV1() | |
if cfg['pretrain']: | |
checkpoint = torch.load("./weights/mobilenetV1X0.25_pretrain.tar", map_location=torch.device('cpu')) | |
from collections import OrderedDict | |
new_state_dict = OrderedDict() | |
for k, v in checkpoint['state_dict'].items(): | |
name = k[7:] # remove module. | |
new_state_dict[name] = v | |
# load params | |
backbone.load_state_dict(new_state_dict) | |
elif cfg['name'] == 'Resnet50': | |
import torchvision.models as models | |
backbone = models.resnet50(pretrained=cfg['pretrain']) | |
self.body = _utils.IntermediateLayerGetter(backbone, cfg['return_layers']) | |
in_channels_stage2 = cfg['in_channel'] | |
in_channels_list = [ | |
in_channels_stage2 * 2, | |
in_channels_stage2 * 4, | |
in_channels_stage2 * 8, | |
] | |
out_channels = cfg['out_channel'] | |
self.fpn = FPN(in_channels_list,out_channels) | |
self.ssh1 = SSH(out_channels, out_channels) | |
self.ssh2 = SSH(out_channels, out_channels) | |
self.ssh3 = SSH(out_channels, out_channels) | |
self.ClassHead = self._make_class_head(fpn_num=3, inchannels=cfg['out_channel']) | |
self.BboxHead = self._make_bbox_head(fpn_num=3, inchannels=cfg['out_channel']) | |
self.LandmarkHead = self._make_landmark_head(fpn_num=3, inchannels=cfg['out_channel']) | |
def _make_class_head(self,fpn_num=3,inchannels=64,anchor_num=2): | |
classhead = nn.ModuleList() | |
for i in range(fpn_num): | |
classhead.append(ClassHead(inchannels,anchor_num)) | |
return classhead | |
def _make_bbox_head(self,fpn_num=3,inchannels=64,anchor_num=2): | |
bboxhead = nn.ModuleList() | |
for i in range(fpn_num): | |
bboxhead.append(BboxHead(inchannels,anchor_num)) | |
return bboxhead | |
def _make_landmark_head(self,fpn_num=3,inchannels=64,anchor_num=2): | |
landmarkhead = nn.ModuleList() | |
for i in range(fpn_num): | |
landmarkhead.append(LandmarkHead(inchannels,anchor_num)) | |
return landmarkhead | |
def forward(self,inputs): | |
out = self.body(inputs) | |
# FPN | |
fpn = self.fpn(out) | |
# SSH | |
feature1 = self.ssh1(fpn[0]) | |
feature2 = self.ssh2(fpn[1]) | |
feature3 = self.ssh3(fpn[2]) | |
features = [feature1, feature2, feature3] | |
bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1) | |
classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)],dim=1) | |
ldm_regressions = torch.cat([self.LandmarkHead[i](feature) for i, feature in enumerate(features)], dim=1) | |
if self.phase == 'train': | |
output = (bbox_regressions, classifications, ldm_regressions) | |
else: | |
output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions) | |
return output |