Spaces:
Runtime error
Runtime error
import tempfile | |
import torch | |
import yaml | |
from basicsr.archs.stylegan2_arch import StyleGAN2Discriminator | |
from basicsr.data.paired_image_dataset import PairedImageDataset | |
from basicsr.losses.losses import GANLoss, L1Loss, PerceptualLoss | |
from gfpgan.archs.arcface_arch import ResNetArcFace | |
from gfpgan.archs.gfpganv1_arch import FacialComponentDiscriminator, GFPGANv1 | |
from gfpgan.models.gfpgan_model import GFPGANModel | |
def test_gfpgan_model(): | |
with open('tests/data/test_gfpgan_model.yml', mode='r') as f: | |
opt = yaml.load(f, Loader=yaml.FullLoader) | |
# build model | |
model = GFPGANModel(opt) | |
# test attributes | |
assert model.__class__.__name__ == 'GFPGANModel' | |
assert isinstance(model.net_g, GFPGANv1) # generator | |
assert isinstance(model.net_d, StyleGAN2Discriminator) # discriminator | |
# facial component discriminators | |
assert isinstance(model.net_d_left_eye, FacialComponentDiscriminator) | |
assert isinstance(model.net_d_right_eye, FacialComponentDiscriminator) | |
assert isinstance(model.net_d_mouth, FacialComponentDiscriminator) | |
# identity network | |
assert isinstance(model.network_identity, ResNetArcFace) | |
# losses | |
assert isinstance(model.cri_pix, L1Loss) | |
assert isinstance(model.cri_perceptual, PerceptualLoss) | |
assert isinstance(model.cri_gan, GANLoss) | |
assert isinstance(model.cri_l1, L1Loss) | |
# optimizer | |
assert isinstance(model.optimizers[0], torch.optim.Adam) | |
assert isinstance(model.optimizers[1], torch.optim.Adam) | |
# prepare data | |
gt = torch.rand((1, 3, 512, 512), dtype=torch.float32) | |
lq = torch.rand((1, 3, 512, 512), dtype=torch.float32) | |
loc_left_eye = torch.rand((1, 4), dtype=torch.float32) | |
loc_right_eye = torch.rand((1, 4), dtype=torch.float32) | |
loc_mouth = torch.rand((1, 4), dtype=torch.float32) | |
data = dict(gt=gt, lq=lq, loc_left_eye=loc_left_eye, loc_right_eye=loc_right_eye, loc_mouth=loc_mouth) | |
model.feed_data(data) | |
# check data shape | |
assert model.lq.shape == (1, 3, 512, 512) | |
assert model.gt.shape == (1, 3, 512, 512) | |
assert model.loc_left_eyes.shape == (1, 4) | |
assert model.loc_right_eyes.shape == (1, 4) | |
assert model.loc_mouths.shape == (1, 4) | |
# ----------------- test optimize_parameters -------------------- # | |
model.feed_data(data) | |
model.optimize_parameters(1) | |
assert model.output.shape == (1, 3, 512, 512) | |
assert isinstance(model.log_dict, dict) | |
# check returned keys | |
expected_keys = [ | |
'l_g_pix', 'l_g_percep', 'l_g_style', 'l_g_gan', 'l_g_gan_left_eye', 'l_g_gan_right_eye', 'l_g_gan_mouth', | |
'l_g_comp_style_loss', 'l_identity', 'l_d', 'real_score', 'fake_score', 'l_d_r1', 'l_d_left_eye', | |
'l_d_right_eye', 'l_d_mouth' | |
] | |
assert set(expected_keys).issubset(set(model.log_dict.keys())) | |
# ----------------- remove pyramid_loss_weight-------------------- # | |
model.feed_data(data) | |
model.optimize_parameters(100000) # large than remove_pyramid_loss = 50000 | |
assert model.output.shape == (1, 3, 512, 512) | |
assert isinstance(model.log_dict, dict) | |
# check returned keys | |
expected_keys = [ | |
'l_g_pix', 'l_g_percep', 'l_g_style', 'l_g_gan', 'l_g_gan_left_eye', 'l_g_gan_right_eye', 'l_g_gan_mouth', | |
'l_g_comp_style_loss', 'l_identity', 'l_d', 'real_score', 'fake_score', 'l_d_r1', 'l_d_left_eye', | |
'l_d_right_eye', 'l_d_mouth' | |
] | |
assert set(expected_keys).issubset(set(model.log_dict.keys())) | |
# ----------------- test save -------------------- # | |
with tempfile.TemporaryDirectory() as tmpdir: | |
model.opt['path']['models'] = tmpdir | |
model.opt['path']['training_states'] = tmpdir | |
model.save(0, 1) | |
# ----------------- test the test function -------------------- # | |
model.test() | |
assert model.output.shape == (1, 3, 512, 512) | |
# delete net_g_ema | |
model.__delattr__('net_g_ema') | |
model.test() | |
assert model.output.shape == (1, 3, 512, 512) | |
assert model.net_g.training is True # should back to training mode after testing | |
# ----------------- test nondist_validation -------------------- # | |
# construct dataloader | |
dataset_opt = dict( | |
name='Demo', | |
dataroot_gt='tests/data/gt', | |
dataroot_lq='tests/data/gt', | |
io_backend=dict(type='disk'), | |
scale=4, | |
phase='val') | |
dataset = PairedImageDataset(dataset_opt) | |
dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=0) | |
assert model.is_train is True | |
with tempfile.TemporaryDirectory() as tmpdir: | |
model.opt['path']['visualization'] = tmpdir | |
model.nondist_validation(dataloader, 1, None, save_img=True) | |
assert model.is_train is True | |
# check metric_results | |
assert 'psnr' in model.metric_results | |
assert isinstance(model.metric_results['psnr'], float) | |
# validation | |
with tempfile.TemporaryDirectory() as tmpdir: | |
model.opt['is_train'] = False | |
model.opt['val']['suffix'] = 'test' | |
model.opt['path']['visualization'] = tmpdir | |
model.opt['val']['pbar'] = True | |
model.nondist_validation(dataloader, 1, None, save_img=True) | |
# check metric_results | |
assert 'psnr' in model.metric_results | |
assert isinstance(model.metric_results['psnr'], float) | |
# if opt['val']['suffix'] is None | |
model.opt['val']['suffix'] = None | |
model.opt['name'] = 'demo' | |
model.opt['path']['visualization'] = tmpdir | |
model.nondist_validation(dataloader, 1, None, save_img=True) | |
# check metric_results | |
assert 'psnr' in model.metric_results | |
assert isinstance(model.metric_results['psnr'], float) | |