Spaces:
Runtime error
Runtime error
import argparse | |
import cv2 | |
import glob | |
import numpy as np | |
import os | |
import torch | |
from basicsr.utils import imwrite | |
from gfpgan import GFPGANer | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--upscale', type=int, default=2) | |
parser.add_argument('--arch', type=str, default='clean') | |
parser.add_argument('--channel', type=int, default=2) | |
parser.add_argument('--model_path', type=str, default='GFPGANCleanv1-NoCE-C2.pth') | |
parser.add_argument('--bg_upsampler', type=str, default='realesrgan') | |
parser.add_argument('--bg_tile', type=int, default=400) | |
parser.add_argument('--test_path', type=str, default='inputs/whole_imgs') | |
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces') | |
parser.add_argument('--only_center_face', action='store_true') | |
parser.add_argument('--aligned', action='store_true') | |
parser.add_argument('--paste_back', action='store_false') | |
parser.add_argument('--save_root', type=str, default='results') | |
args = parser.parse_args() | |
if args.test_path.endswith('/'): | |
args.test_path = args.test_path[:-1] | |
os.makedirs(args.save_root, exist_ok=True) | |
# background upsampler | |
if args.bg_upsampler == 'realesrgan': | |
if not torch.cuda.is_available(): # CPU | |
import warnings | |
warnings.warn('The unoptimized RealESRGAN is very slow on CPU. We do not use it. ' | |
'If you really want to use it, please modify the corresponding codes.') | |
bg_upsampler = None | |
else: | |
from realesrgan import RealESRGANer | |
bg_upsampler = RealESRGANer( | |
scale=2, | |
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth', | |
tile=args.bg_tile, | |
tile_pad=10, | |
pre_pad=0, | |
half=True) # need to set False in CPU mode | |
else: | |
bg_upsampler = None | |
# set up GFPGAN restorer | |
restorer = GFPGANer( | |
model_path=args.model_path, | |
upscale=args.upscale, | |
arch=args.arch, | |
channel_multiplier=args.channel, | |
bg_upsampler=bg_upsampler) | |
img_list = sorted(glob.glob(os.path.join(args.test_path, '*'))) | |
for img_path in img_list: | |
# read image | |
img_name = os.path.basename(img_path) | |
print(f'Processing {img_name} ...') | |
basename, ext = os.path.splitext(img_name) | |
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR) | |
cropped_faces, restored_faces, restored_img = restorer.enhance( | |
input_img, has_aligned=args.aligned, only_center_face=args.only_center_face, paste_back=args.paste_back) | |
# save faces | |
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)): | |
# save cropped face | |
save_crop_path = os.path.join(args.save_root, f'{basename}_{idx:02d}.png') | |
imwrite(cropped_face, save_crop_path) | |
# save restored face | |
if args.suffix is not None: | |
save_face_name = f'{basename}_{idx:02d}_{args.suffix}.png' | |
else: | |
save_face_name = f'{basename}_{idx:02d}.png' | |
save_restore_path = os.path.join(args.save_root, save_face_name) | |
imwrite(restored_face, save_restore_path) | |
# save cmp image | |
#cmp_img = np.concatenate((cropped_face, restored_face), axis=1) | |
#imwrite(cmp_img, os.path.join(args.save_root, f'{basename}_{idx:02d}.png')) | |
# save restored img | |
if restored_img is not None: | |
if args.suffix is not None: | |
save_restore_path = os.path.join(args.save_root, f'{basename}_{args.suffix}{ext}') | |
else: | |
save_restore_path = os.path.join(args.save_root, img_name) | |
imwrite(restored_img, save_restore_path) | |
print(f'Results are in the [{args.save_root}] folder.') | |
if __name__ == '__main__': | |
main() | |