Ahsen Khaliq commited on
Commit
574adff
·
1 Parent(s): 7b15fab

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -0
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import mediapipe as mp
2
+ import gradio as gr
3
+ import cv2
4
+ import torch
5
+
6
+
7
+ # Images
8
+ torch.hub.download_url_to_file('https://artbreeder.b-cdn.net/imgs/c789e54661bfb432c5522a36553f.jpeg', 'face1.jpg')
9
+ torch.hub.download_url_to_file('https://artbreeder.b-cdn.net/imgs/c86622e8cb58d490e35b01cb9996.jpeg', 'face2.jpg')
10
+
11
+ mp_face_mesh = mp.solutions.face_mesh
12
+
13
+ # Prepare DrawingSpec for drawing the face landmarks later.
14
+ mp_drawing = mp.solutions.drawing_utils
15
+ drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
16
+
17
+ # Run MediaPipe Face Mesh.
18
+
19
+ def inference(image):
20
+ with mp_face_mesh.FaceMesh(
21
+ static_image_mode=True,
22
+ max_num_faces=2,
23
+ min_detection_confidence=0.5) as face_mesh:
24
+ # Convert the BGR image to RGB and process it with MediaPipe Face Mesh.
25
+ results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
26
+
27
+ annotated_image = image.copy()
28
+ for face_landmarks in results.multi_face_landmarks:
29
+ mp_drawing.draw_landmarks(
30
+ image=annotated_image,
31
+ landmark_list=face_landmarks,
32
+ connections=mp_face_mesh.FACE_CONNECTIONS,
33
+ landmark_drawing_spec=drawing_spec,
34
+ connection_drawing_spec=drawing_spec)
35
+ return annotated_image
36
+
37
+ title = "Face Mesh"
38
+ description = "Gradio demo for Face Mesh. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
39
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.06724'>Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs</a> | <a href='https://github.com/google/mediapipe'>Github Repo</a></p>"
40
+
41
+ gr.Interface(
42
+ inference,
43
+ [gr.inputs.Image(label="Input")],
44
+ gr.outputs.Image(type="pil", label="Output"),
45
+ title=title,
46
+ description=description,
47
+ article=article,
48
+ examples=[
49
+ ["face1.jpg"],
50
+ ["face2.jpg"]
51
+ ]).launch()