Detic / detic /modeling /text /text_encoder.py
AK391
files
159f437
# This code is modified from https://github.com/openai/CLIP/blob/main/clip/clip.py
# Modified by Xingyi Zhou
# The original code is under MIT license
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Union, List
from collections import OrderedDict
import torch
from torch import nn
import torch
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
__all__ = ["tokenize"]
count = 0
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(
*[ResidualAttentionBlock(width, heads, attn_mask) \
for _ in range(layers)])
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class CLIPTEXT(nn.Module):
def __init__(self,
embed_dim=512,
# text
context_length=77,
vocab_size=49408,
transformer_width=512,
transformer_heads=8,
transformer_layers=12
):
super().__init__()
self._tokenizer = _Tokenizer()
self.context_length = context_length
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
# self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def device(self):
return self.text_projection.device
@property
def dtype(self):
return self.text_projection.dtype
def tokenize(self,
texts: Union[str, List[str]], \
context_length: int = 77) -> torch.LongTensor:
"""
"""
if isinstance(texts, str):
texts = [texts]
sot_token = self._tokenizer.encoder["<|startoftext|>"]
eot_token = self._tokenizer.encoder["<|endoftext|>"]
all_tokens = [[sot_token] + self._tokenizer.encode(text) + [eot_token] for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
st = torch.randint(
len(tokens) - context_length + 1, (1,))[0].item()
tokens = tokens[st: st + context_length]
# raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def encode_text(self, text):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def forward(self, captions):
'''
captions: list of strings
'''
text = self.tokenize(captions).to(self.device) # B x L x D
features = self.encode_text(text) # B x D
return features
def build_text_encoder(pretrain=True):
text_encoder = CLIPTEXT()
if pretrain:
import clip
pretrained_model, _ = clip.load("ViT-B/32", device='cpu')
state_dict = pretrained_model.state_dict()
to_delete_keys = ["logit_scale", "input_resolution", \
"context_length", "vocab_size"] + \
[k for k in state_dict.keys() if k.startswith('visual.')]
for k in to_delete_keys:
if k in state_dict:
del state_dict[k]
print('Loading pretrained CLIP')
text_encoder.load_state_dict(state_dict)
# import pdb; pdb.set_trace()
return text_encoder