Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Update Gradio app with multiple files
Browse files
    	
        app.py
    CHANGED
    
    | @@ -41,89 +41,61 @@ def ocr_process( | |
| 41 | 
             
                if image_input is None:
         | 
| 42 | 
             
                    return "Please upload an image first."
         | 
| 43 |  | 
| 44 | 
            -
                 | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
             | 
| 48 | 
            -
             | 
| 49 | 
            -
                    with  | 
| 50 | 
            -
             | 
| 51 | 
            -
             | 
| 52 | 
            -
             | 
| 53 | 
            -
                         | 
| 54 | 
            -
             | 
| 55 | 
            -
             | 
| 56 | 
            -
                             | 
| 57 | 
            -
                                rgb_image.paste(image_input, mask=image_input.split()[3])
         | 
| 58 | 
            -
                            else:
         | 
| 59 | 
            -
                                rgb_image.paste(image_input)
         | 
| 60 | 
            -
                            rgb_image.save(temp_image_path, 'JPEG', quality=95)
         | 
| 61 | 
            -
                        else:
         | 
| 62 | 
            -
                            image_input.save(temp_image_path, 'JPEG', quality=95)
         | 
| 63 | 
            -
                        
         | 
| 64 | 
            -
                        # Verify image was saved
         | 
| 65 | 
            -
                        if not os.path.exists(temp_image_path):
         | 
| 66 | 
            -
                            return "Error: Failed to save image for processing."
         | 
| 67 | 
            -
                        
         | 
| 68 | 
            -
                        # Set parameters based on preset
         | 
| 69 | 
            -
                        presets = {
         | 
| 70 | 
            -
                            "tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
         | 
| 71 | 
            -
                            "small": {"base_size": 640, "image_size": 640, "crop_mode": False},
         | 
| 72 | 
            -
                            "base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
         | 
| 73 | 
            -
                            "large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
         | 
| 74 | 
            -
                            "gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
         | 
| 75 | 
            -
                        }
         | 
| 76 | 
            -
                        
         | 
| 77 | 
            -
                        config = presets[preset]
         | 
| 78 | 
            -
             | 
| 79 | 
            -
                        # Set prompt based on task type
         | 
| 80 | 
            -
                        if task_type == "markdown":
         | 
| 81 | 
            -
                            prompt = "<image>\n<|grounding|>Convert the document to markdown. "
         | 
| 82 | 
             
                        else:
         | 
| 83 | 
            -
                             | 
| 84 | 
            -
             | 
| 85 | 
            -
                        # Run inference - the model returns the text directly
         | 
| 86 | 
            -
                        result = model.infer(
         | 
| 87 | 
            -
                            tokenizer,
         | 
| 88 | 
            -
                            prompt=prompt,
         | 
| 89 | 
            -
                            image_file=temp_image_path,
         | 
| 90 | 
            -
                            output_path=temp_dir,
         | 
| 91 | 
            -
                            base_size=config["base_size"],
         | 
| 92 | 
            -
                            image_size=config["image_size"],
         | 
| 93 | 
            -
                            crop_mode=config["crop_mode"],
         | 
| 94 | 
            -
                            save_results=False,
         | 
| 95 | 
            -
                            test_compress=False,
         | 
| 96 | 
            -
                        )
         | 
| 97 | 
            -
             | 
| 98 | 
            -
                    # Move model back to CPU to free GPU memory
         | 
| 99 | 
            -
                    model.to("cpu")
         | 
| 100 | 
            -
                    torch.cuda.empty_cache()
         | 
| 101 | 
            -
             | 
| 102 | 
            -
                    # Process the result
         | 
| 103 | 
            -
                    if result is None:
         | 
| 104 | 
            -
                        return "No text could be extracted. The image might be too blurry or contain no readable text."
         | 
| 105 | 
            -
                    
         | 
| 106 | 
            -
                    # Handle different result types
         | 
| 107 | 
            -
                    if isinstance(result, str):
         | 
| 108 | 
            -
                        output_text = result.strip()
         | 
| 109 | 
            -
                    elif isinstance(result, (list, tuple)) and len(result) > 0:
         | 
| 110 | 
            -
                        output_text = str(result[0]).strip()
         | 
| 111 | 
            -
                    elif isinstance(result, dict):
         | 
| 112 | 
            -
                        # Try to get text from common keys
         | 
| 113 | 
            -
                        output_text = result.get('text', result.get('output', result.get('result', str(result))))
         | 
| 114 | 
             
                    else:
         | 
| 115 | 
            -
                         | 
| 116 |  | 
| 117 | 
            -
                     | 
| 118 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 119 |  | 
| 120 | 
            -
                     | 
| 121 |  | 
| 122 | 
            -
             | 
| 123 | 
            -
                     | 
| 124 | 
            -
             | 
| 125 | 
            -
                     | 
| 126 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 127 |  | 
| 128 |  | 
| 129 | 
             
            # Create Gradio interface
         | 
|  | |
| 41 | 
             
                if image_input is None:
         | 
| 42 | 
             
                    return "Please upload an image first."
         | 
| 43 |  | 
| 44 | 
            +
                # Move model to GPU and set dtype
         | 
| 45 | 
            +
                model.cuda().to(torch.bfloat16)
         | 
| 46 | 
            +
                
         | 
| 47 | 
            +
                # Create temp directory for this session
         | 
| 48 | 
            +
                with tempfile.TemporaryDirectory() as temp_dir:
         | 
| 49 | 
            +
                    # Save image with proper format
         | 
| 50 | 
            +
                    temp_image_path = os.path.join(temp_dir, "input_image.jpg")
         | 
| 51 | 
            +
                    # Convert RGBA to RGB if necessary
         | 
| 52 | 
            +
                    if image_input.mode in ('RGBA', 'LA', 'P'):
         | 
| 53 | 
            +
                        rgb_image = Image.new('RGB', image_input.size, (255, 255, 255))
         | 
| 54 | 
            +
                        # Handle different image modes
         | 
| 55 | 
            +
                        if image_input.mode == 'RGBA':
         | 
| 56 | 
            +
                            rgb_image.paste(image_input, mask=image_input.split()[3])
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 57 | 
             
                        else:
         | 
| 58 | 
            +
                            rgb_image.paste(image_input)
         | 
| 59 | 
            +
                        rgb_image.save(temp_image_path, 'JPEG', quality=95)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 60 | 
             
                    else:
         | 
| 61 | 
            +
                        image_input.save(temp_image_path, 'JPEG', quality=95)
         | 
| 62 |  | 
| 63 | 
            +
                    # Set parameters based on preset
         | 
| 64 | 
            +
                    presets = {
         | 
| 65 | 
            +
                        "tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
         | 
| 66 | 
            +
                        "small": {"base_size": 640, "image_size": 640, "crop_mode": False},
         | 
| 67 | 
            +
                        "base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
         | 
| 68 | 
            +
                        "large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
         | 
| 69 | 
            +
                        "gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
         | 
| 70 | 
            +
                    }
         | 
| 71 |  | 
| 72 | 
            +
                    config = presets[preset]
         | 
| 73 |  | 
| 74 | 
            +
                    # Set prompt based on task type
         | 
| 75 | 
            +
                    if task_type == "markdown":
         | 
| 76 | 
            +
                        prompt = "<image>\n<|grounding|>Convert the document to markdown. "
         | 
| 77 | 
            +
                    else:
         | 
| 78 | 
            +
                        prompt = "<image>\nFree OCR. "
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                    # Run inference - return the result directly
         | 
| 81 | 
            +
                    result = model.infer(
         | 
| 82 | 
            +
                        tokenizer,
         | 
| 83 | 
            +
                        prompt=prompt,
         | 
| 84 | 
            +
                        image_file=temp_image_path,
         | 
| 85 | 
            +
                        output_path=temp_dir,
         | 
| 86 | 
            +
                        base_size=config["base_size"],
         | 
| 87 | 
            +
                        image_size=config["image_size"],
         | 
| 88 | 
            +
                        crop_mode=config["crop_mode"],
         | 
| 89 | 
            +
                        save_results=False,
         | 
| 90 | 
            +
                        test_compress=False,
         | 
| 91 | 
            +
                    )
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                # Move model back to CPU to free GPU memory
         | 
| 94 | 
            +
                model.to("cpu")
         | 
| 95 | 
            +
                torch.cuda.empty_cache()
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                # Return the result directly - the model returns the extracted text
         | 
| 98 | 
            +
                return result
         | 
| 99 |  | 
| 100 |  | 
| 101 | 
             
            # Create Gradio interface
         | 
