Spaces:
Runtime error
Runtime error
import cv2 | |
import torch | |
import urllib.request | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from PIL import Image | |
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") | |
urllib.request.urlretrieve(url, filename) | |
model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest inference speed) | |
#model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed) | |
#model_type = "MiDaS_small" # MiDaS v2.1 - Small (lowest accuracy, highest inference speed) | |
midas = torch.hub.load("intel-isl/MiDaS", model_type) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
midas.to(device) | |
midas.eval() | |
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") | |
if model_type == "DPT_Large" or model_type == "DPT_Hybrid": | |
transform = midas_transforms.dpt_transform | |
else: | |
transform = midas_transforms.small_transform | |
def inference(img): | |
img = cv2.imread(img.name) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
input_batch = transform(img).to(device) | |
with torch.no_grad(): | |
prediction = midas(input_batch) | |
prediction = torch.nn.functional.interpolate( | |
prediction.unsqueeze(1), | |
size=img.shape[:2], | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
output = prediction.cpu().numpy() | |
formatted = (output * 255 / np.max(output)).astype('uint8') | |
img = Image.fromarray(formatted) | |
return img | |
inputs = gr.inputs.Image(type='file', label="Original Image") | |
outputs = gr.outputs.Image(type="pil",label="Output Image") | |
title = "DPT-Large" | |
description = "Gradio demo for DPT-Large:Vision Transformers for Dense Prediction.To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2103.13413' target='_blank'>Vision Transformers for Dense Prediction</a> | <a href='https://github.com/intel-isl/MiDaS' target='_blank'>Github Repo</a></p>" | |
examples=[['dog.jpg']] | |
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, analytics_enabled=False,examples=examples, enable_queue=True).launch(debug=True) |