Ahsen Khaliq
Update app.py
d627a04
raw
history blame
9.81 kB
import os
os.system("gdown https://drive.google.com/uc?id=14pXWwB4Zm82rsDdvbGguLfx9F8aM7ovT")
import clip
import os
from torch import nn
import numpy as np
import torch
import torch.nn.functional as nnf
import sys
from typing import Tuple, List, Union, Optional
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
from tqdm import tqdm, trange
import skimage.io as io
import PIL.Image
class MLP(nn.Module):
def forward(self, x: T) -> T:
return self.model(x)
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
super(MLP, self).__init__()
layers = []
for i in range(len(sizes) -1):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
if i < len(sizes) - 2:
layers.append(act())
self.model = nn.Sequential(*layers)
class ClipCaptionModel(nn.Module):
#@functools.lru_cache #FIXME
def get_dummy_token(self, batch_size: int, device: D) -> T:
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None):
embedding_text = self.gpt.transformer.wte(tokens)
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
#print(embedding_text.size()) #torch.Size([5, 67, 768])
#print(prefix_projections.size()) #torch.Size([5, 1, 768])
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
if labels is not None:
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
labels = torch.cat((dummy_token, tokens), dim=1)
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
return out
def __init__(self, prefix_length: int, prefix_size: int = 512):
super(ClipCaptionModel, self).__init__()
self.prefix_length = prefix_length
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
if prefix_length > 10: # not enough memory
self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length)
else:
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length))
class ClipCaptionPrefix(ClipCaptionModel):
def parameters(self, recurse: bool = True):
return self.clip_project.parameters()
def train(self, mode: bool = True):
super(ClipCaptionPrefix, self).train(mode)
self.gpt.eval()
return self
#@title Caption prediction
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None,
entry_length=67, temperature=1., stop_token: str = '.'):
model.eval()
stop_token_index = tokenizer.encode(stop_token)[0]
tokens = None
scores = None
device = next(model.parameters()).device
seq_lengths = torch.ones(beam_size, device=device)
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
with torch.no_grad():
if embed is not None:
generated = embed
else:
if tokens is None:
tokens = torch.tensor(tokenizer.encode(prompt))
tokens = tokens.unsqueeze(0).to(device)
generated = model.gpt.transformer.wte(tokens)
for i in range(entry_length):
outputs = model.gpt(inputs_embeds=generated)
logits = outputs.logits
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
logits = logits.softmax(-1).log()
if scores is None:
scores, next_tokens = logits.topk(beam_size, -1)
generated = generated.expand(beam_size, *generated.shape[1:])
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
if tokens is None:
tokens = next_tokens
else:
tokens = tokens.expand(beam_size, *tokens.shape[1:])
tokens = torch.cat((tokens, next_tokens), dim=1)
else:
logits[is_stopped] = -float(np.inf)
logits[is_stopped, 0] = 0
scores_sum = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
scores_sum_average = scores_sum / seq_lengths[:, None]
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1)
next_tokens_source = next_tokens // scores_sum.shape[1]
seq_lengths = seq_lengths[next_tokens_source]
next_tokens = next_tokens % scores_sum.shape[1]
next_tokens = next_tokens.unsqueeze(1)
tokens = tokens[next_tokens_source]
tokens = torch.cat((tokens, next_tokens), dim=1)
generated = generated[next_tokens_source]
scores = scores_sum_average * seq_lengths
is_stopped = is_stopped[next_tokens_source]
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1)
generated = torch.cat((generated, next_token_embed), dim=1)
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
if is_stopped.all():
break
scores = scores / seq_lengths
output_list = tokens.cpu().numpy()
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)]
order = scores.argsort(descending=True)
output_texts = [output_texts[i] for i in order]
return output_texts
def generate2(
model,
tokenizer,
tokens=None,
prompt=None,
embed=None,
entry_count=1,
entry_length=67, # maximum number of words
top_p=0.8,
temperature=1.,
stop_token: str = '.',
):
model.eval()
generated_num = 0
generated_list = []
stop_token_index = tokenizer.encode(stop_token)[0]
filter_value = -float("Inf")
device = next(model.parameters()).device
with torch.no_grad():
for entry_idx in trange(entry_count):
if embed is not None:
generated = embed
else:
if tokens is None:
tokens = torch.tensor(tokenizer.encode(prompt))
tokens = tokens.unsqueeze(0).to(device)
generated = model.gpt.transformer.wte(tokens)
for i in range(entry_length):
outputs = model.gpt(inputs_embeds=generated)
logits = outputs.logits
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
..., :-1
].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[:, indices_to_remove] = filter_value
next_token = torch.argmax(logits, -1).unsqueeze(0)
next_token_embed = model.gpt.transformer.wte(next_token)
if tokens is None:
tokens = next_token
else:
tokens = torch.cat((tokens, next_token), dim=1)
generated = torch.cat((generated, next_token_embed), dim=1)
if stop_token_index == next_token.item():
break
output_list = list(tokens.squeeze().cpu().numpy())
output_text = tokenizer.decode(output_list)
generated_list.append(output_text)
return generated_list[0]
is_gpu = False
device = CUDA(0) if is_gpu else "cpu"
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
prefix_length = 10
model = ClipCaptionModel(prefix_length)
model.load_state_dict(torch.load(model_path, map_location=CPU))
model = model.eval()
device = CUDA(0) if is_gpu else "cpu"
model = model.to(device)
def inference(img):
use_beam_search = False
image = io.imread(img.name)
pil_image = PIL.Image.fromarray(image)
image = preprocess(pil_image).unsqueeze(0).to(device)
with torch.no_grad():
prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
if use_beam_search:
generated_text_prefix = generate_beam(model, tokenizer, embed=prefix_embed)[0]
else:
generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed)
return generated_text_prefix
title = "Anime2Sketch"
description = "demo for Anime2Sketch. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.05703'>Adversarial Open Domain Adaption for Sketch-to-Photo Synthesis</a> | <a href='https://github.com/Mukosame/Anime2Sketch'>Github Repo</a></p>"
gr.Interface(
inference,
gr.inputs.Image(type="file", label="Input"),
gr.outputs.Textbox(label="Output"),
title=title,
description=description,
article=article,
enable_queue=True
).launch(debug=True)