Ahsen Khaliq
Update app.py
ade4ef4
raw
history blame
10.7 kB
import os
os.system("gdown https://drive.google.com/uc?id=14pXWwB4Zm82rsDdvbGguLfx9F8aM7ovT")
os.system("gdown https://drive.google.com/uc?id=1IdaBtMSvtyzF0ByVaBHtvM0JYSXRExRX")
import clip
import os
from torch import nn
import numpy as np
import torch
import torch.nn.functional as nnf
import sys
from typing import Tuple, List, Union, Optional
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
from tqdm import tqdm, trange
import skimage.io as io
import PIL.Image
import gradio as gr
N = type(None)
V = np.array
ARRAY = np.ndarray
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
VS = Union[Tuple[V, ...], List[V]]
VN = Union[V, N]
VNS = Union[VS, N]
T = torch.Tensor
TS = Union[Tuple[T, ...], List[T]]
TN = Optional[T]
TNS = Union[Tuple[TN, ...], List[TN]]
TSN = Optional[TS]
TA = Union[T, ARRAY]
D = torch.device
CPU = torch.device('cpu')
def get_device(device_id: int) -> D:
if not torch.cuda.is_available():
return CPU
device_id = min(torch.cuda.device_count() - 1, device_id)
return torch.device(f'cuda:{device_id}')
CUDA = get_device
class MLP(nn.Module):
def forward(self, x: T) -> T:
return self.model(x)
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
super(MLP, self).__init__()
layers = []
for i in range(len(sizes) -1):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
if i < len(sizes) - 2:
layers.append(act())
self.model = nn.Sequential(*layers)
class ClipCaptionModel(nn.Module):
#@functools.lru_cache #FIXME
def get_dummy_token(self, batch_size: int, device: D) -> T:
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None):
embedding_text = self.gpt.transformer.wte(tokens)
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
#print(embedding_text.size()) #torch.Size([5, 67, 768])
#print(prefix_projections.size()) #torch.Size([5, 1, 768])
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
if labels is not None:
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
labels = torch.cat((dummy_token, tokens), dim=1)
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
return out
def __init__(self, prefix_length: int, prefix_size: int = 512):
super(ClipCaptionModel, self).__init__()
self.prefix_length = prefix_length
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
if prefix_length > 10: # not enough memory
self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length)
else:
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length))
class ClipCaptionPrefix(ClipCaptionModel):
def parameters(self, recurse: bool = True):
return self.clip_project.parameters()
def train(self, mode: bool = True):
super(ClipCaptionPrefix, self).train(mode)
self.gpt.eval()
return self
#@title Caption prediction
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None,
entry_length=67, temperature=1., stop_token: str = '.'):
model.eval()
stop_token_index = tokenizer.encode(stop_token)[0]
tokens = None
scores = None
device = next(model.parameters()).device
seq_lengths = torch.ones(beam_size, device=device)
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
with torch.no_grad():
if embed is not None:
generated = embed
else:
if tokens is None:
tokens = torch.tensor(tokenizer.encode(prompt))
tokens = tokens.unsqueeze(0).to(device)
generated = model.gpt.transformer.wte(tokens)
for i in range(entry_length):
outputs = model.gpt(inputs_embeds=generated)
logits = outputs.logits
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
logits = logits.softmax(-1).log()
if scores is None:
scores, next_tokens = logits.topk(beam_size, -1)
generated = generated.expand(beam_size, *generated.shape[1:])
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
if tokens is None:
tokens = next_tokens
else:
tokens = tokens.expand(beam_size, *tokens.shape[1:])
tokens = torch.cat((tokens, next_tokens), dim=1)
else:
logits[is_stopped] = -float(np.inf)
logits[is_stopped, 0] = 0
scores_sum = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
scores_sum_average = scores_sum / seq_lengths[:, None]
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1)
next_tokens_source = next_tokens // scores_sum.shape[1]
seq_lengths = seq_lengths[next_tokens_source]
next_tokens = next_tokens % scores_sum.shape[1]
next_tokens = next_tokens.unsqueeze(1)
tokens = tokens[next_tokens_source]
tokens = torch.cat((tokens, next_tokens), dim=1)
generated = generated[next_tokens_source]
scores = scores_sum_average * seq_lengths
is_stopped = is_stopped[next_tokens_source]
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1)
generated = torch.cat((generated, next_token_embed), dim=1)
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
if is_stopped.all():
break
scores = scores / seq_lengths
output_list = tokens.cpu().numpy()
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)]
order = scores.argsort(descending=True)
output_texts = [output_texts[i] for i in order]
return output_texts
def generate2(
model,
tokenizer,
tokens=None,
prompt=None,
embed=None,
entry_count=1,
entry_length=67, # maximum number of words
top_p=0.8,
temperature=1.,
stop_token: str = '.',
):
model.eval()
generated_num = 0
generated_list = []
stop_token_index = tokenizer.encode(stop_token)[0]
filter_value = -float("Inf")
device = next(model.parameters()).device
with torch.no_grad():
for entry_idx in trange(entry_count):
if embed is not None:
generated = embed
else:
if tokens is None:
tokens = torch.tensor(tokenizer.encode(prompt))
tokens = tokens.unsqueeze(0).to(device)
generated = model.gpt.transformer.wte(tokens)
for i in range(entry_length):
outputs = model.gpt(inputs_embeds=generated)
logits = outputs.logits
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
..., :-1
].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[:, indices_to_remove] = filter_value
next_token = torch.argmax(logits, -1).unsqueeze(0)
next_token_embed = model.gpt.transformer.wte(next_token)
if tokens is None:
tokens = next_token
else:
tokens = torch.cat((tokens, next_token), dim=1)
generated = torch.cat((generated, next_token_embed), dim=1)
if stop_token_index == next_token.item():
break
output_list = list(tokens.squeeze().cpu().numpy())
output_text = tokenizer.decode(output_list)
generated_list.append(output_text)
return generated_list[0]
def inference(img,model):
is_gpu = False
device = CUDA(0) if is_gpu else "cpu"
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
prefix_length = 10
model = ClipCaptionModel(prefix_length)
if model == "COCO":
model_path = 'coco_weights.pt'
else:
model_path = 'conceptual_weights.pt'
model.load_state_dict(torch.load(model_path, map_location=CPU))
model = model.to(device)
use_beam_search = False
image = io.imread(img.name)
pil_image = PIL.Image.fromarray(image)
image = preprocess(pil_image).unsqueeze(0).to(device)
with torch.no_grad():
prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
if use_beam_search:
generated_text_prefix = generate_beam(model, tokenizer, embed=prefix_embed)[0]
else:
generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed)
return generated_text_prefix
title = "CLIP prefix captioning"
description = "Gradio demo for CLIP prefix captioning: a simple image captioning model. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://github.com/rmokady/CLIP_prefix_caption' target='_blank'>Github Repo</a></p>"
examples=[['water.jpeg']]
gr.Interface(
inference,
[gr.inputs.Image(type="file", label="Input"),gr.inputs.Radio(choices=["COCO","Conceptual captions"], type="value", default="COCO", label="Model")],
gr.outputs.Textbox(label="Output"),
title=title,
description=description,
article=article,
enable_queue=True,
examples=examples
).launch(debug=True)