Spaces:
Running
on
T4
Running
on
T4
import os | |
os.system("git clone https://github.com/bryandlee/animegan2-pytorch") | |
os.system("gdown https://drive.google.com/uc?id=1WK5Mdt6mwlcsqCZMHkCUSDJxN1UyFi0-") | |
os.system("gdown https://drive.google.com/uc?id=18H3iK09_d54qEDoWIc82SyWB2xun4gjU") | |
import sys | |
sys.path.append("animegan2-pytorch") | |
import torch | |
torch.set_grad_enabled(False) | |
from model import Generator | |
device = "cpu" | |
model = Generator().eval().to(device) | |
model.load_state_dict(torch.load("face_paint_512_v2_0.pt")) | |
from PIL import Image | |
from torchvision.transforms.functional import to_tensor, to_pil_image | |
def face2paint( | |
img: Image.Image, | |
size: int, | |
side_by_side: bool = True, | |
) -> Image.Image: | |
w, h = img.size | |
s = min(w, h) | |
img = img.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2)) | |
img = img.resize((size, size), Image.LANCZOS) | |
input = to_tensor(img).unsqueeze(0) * 2 - 1 | |
output = model(input.to(device)).cpu()[0] | |
if side_by_side: | |
output = torch.cat([input[0], output], dim=2) | |
output = (output * 0.5 + 0.5).clip(0, 1) | |
return to_pil_image(output) | |
#@title Face Detector & FFHQ-style Alignment | |
# https://github.com/woctezuma/stylegan2-projecting-images | |
import os | |
import dlib | |
import collections | |
from typing import Union, List | |
import numpy as np | |
from PIL import Image | |
def get_dlib_face_detector(predictor_path: str = "shape_predictor_68_face_landmarks.dat"): | |
if not os.path.isfile(predictor_path): | |
model_file = "shape_predictor_68_face_landmarks.dat.bz2" | |
os.system(f"wget http://dlib.net/files/{model_file}") | |
os.system(f"bzip2 -dk {model_file}") | |
detector = dlib.get_frontal_face_detector() | |
shape_predictor = dlib.shape_predictor(predictor_path) | |
def detect_face_landmarks(img: Union[Image.Image, np.ndarray]): | |
if isinstance(img, Image.Image): | |
img = np.array(img) | |
faces = [] | |
dets = detector(img) | |
for d in dets: | |
shape = shape_predictor(img, d) | |
faces.append(np.array([[v.x, v.y] for v in shape.parts()])) | |
return faces | |
return detect_face_landmarks | |
def display_facial_landmarks( | |
img: Image, | |
landmarks: List[np.ndarray], | |
fig_size=[15, 15] | |
): | |
plot_style = dict( | |
marker='o', | |
markersize=4, | |
linestyle='-', | |
lw=2 | |
) | |
pred_type = collections.namedtuple('prediction_type', ['slice', 'color']) | |
pred_types = { | |
'face': pred_type(slice(0, 17), (0.682, 0.780, 0.909, 0.5)), | |
'eyebrow1': pred_type(slice(17, 22), (1.0, 0.498, 0.055, 0.4)), | |
'eyebrow2': pred_type(slice(22, 27), (1.0, 0.498, 0.055, 0.4)), | |
'nose': pred_type(slice(27, 31), (0.345, 0.239, 0.443, 0.4)), | |
'nostril': pred_type(slice(31, 36), (0.345, 0.239, 0.443, 0.4)), | |
'eye1': pred_type(slice(36, 42), (0.596, 0.875, 0.541, 0.3)), | |
'eye2': pred_type(slice(42, 48), (0.596, 0.875, 0.541, 0.3)), | |
'lips': pred_type(slice(48, 60), (0.596, 0.875, 0.541, 0.3)), | |
'teeth': pred_type(slice(60, 68), (0.596, 0.875, 0.541, 0.4)) | |
} | |
for face in landmarks: | |
for pred_type in pred_types.values(): | |
ax.plot( | |
face[pred_type.slice, 0], | |
face[pred_type.slice, 1], | |
color=pred_type.color, **plot_style | |
) | |
import PIL.Image | |
import PIL.ImageFile | |
import numpy as np | |
import scipy.ndimage | |
def align_and_crop_face( | |
img: Image.Image, | |
landmarks: np.ndarray, | |
expand: float = 1.0, | |
output_size: int = 1024, | |
transform_size: int = 4096, | |
enable_padding: bool = True, | |
): | |
# Parse landmarks. | |
# pylint: disable=unused-variable | |
lm = landmarks | |
lm_chin = lm[0 : 17] # left-right | |
lm_eyebrow_left = lm[17 : 22] # left-right | |
lm_eyebrow_right = lm[22 : 27] # left-right | |
lm_nose = lm[27 : 31] # top-down | |
lm_nostrils = lm[31 : 36] # top-down | |
lm_eye_left = lm[36 : 42] # left-clockwise | |
lm_eye_right = lm[42 : 48] # left-clockwise | |
lm_mouth_outer = lm[48 : 60] # left-clockwise | |
lm_mouth_inner = lm[60 : 68] # left-clockwise | |
# Calculate auxiliary vectors. | |
eye_left = np.mean(lm_eye_left, axis=0) | |
eye_right = np.mean(lm_eye_right, axis=0) | |
eye_avg = (eye_left + eye_right) * 0.5 | |
eye_to_eye = eye_right - eye_left | |
mouth_left = lm_mouth_outer[0] | |
mouth_right = lm_mouth_outer[6] | |
mouth_avg = (mouth_left + mouth_right) * 0.5 | |
eye_to_mouth = mouth_avg - eye_avg | |
# Choose oriented crop rectangle. | |
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | |
x /= np.hypot(*x) | |
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) | |
x *= expand | |
y = np.flipud(x) * [-1, 1] | |
c = eye_avg + eye_to_mouth * 0.1 | |
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | |
qsize = np.hypot(*x) * 2 | |
# Shrink. | |
shrink = int(np.floor(qsize / output_size * 0.5)) | |
if shrink > 1: | |
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) | |
img = img.resize(rsize, PIL.Image.ANTIALIAS) | |
quad /= shrink | |
qsize /= shrink | |
# Crop. | |
border = max(int(np.rint(qsize * 0.1)), 3) | |
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) | |
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) | |
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: | |
img = img.crop(crop) | |
quad -= crop[0:2] | |
# Pad. | |
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) | |
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) | |
if enable_padding and max(pad) > border - 4: | |
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) | |
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') | |
h, w, _ = img.shape | |
y, x, _ = np.ogrid[:h, :w, :1] | |
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3])) | |
blur = qsize * 0.02 | |
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | |
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0) | |
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') | |
quad += pad[:2] | |
# Transform. | |
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) | |
if output_size < transform_size: | |
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) | |
return img | |
import requests | |
def inference(image): | |
img = image | |
face_detector = get_dlib_face_detector() | |
landmarks = face_detector(img) | |
display_facial_landmarks(img, landmarks, fig_size=[5, 5]) | |
for landmark in landmarks: | |
face = align_and_crop_face(img, landmark, expand=1.3) | |
out = face2paint(face, 512) | |
return out | |
iface = gr.Interface(inference, "image", "image") | |
iface.launch() | |