Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,46 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
import tensorflow as tf
|
4 |
import numpy as np
|
5 |
-
|
|
|
|
|
6 |
|
7 |
st.title("物体识别应用")
|
8 |
st.write("通过摄像头识别物体,从左到右显示主要物体的名称")
|
9 |
|
10 |
-
#
|
11 |
-
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
img = frame.to_ndarray(format="bgr24")
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
#
|
33 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import cv2
|
|
|
3 |
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow.keras.applications.mobilenet import preprocess_input
|
6 |
+
from tensorflow.keras.applications.mobilenet import decode_predictions
|
7 |
|
8 |
st.title("物体识别应用")
|
9 |
st.write("通过摄像头识别物体,从左到右显示主要物体的名称")
|
10 |
|
11 |
+
# 设置摄像头
|
12 |
+
video_capture = cv2.VideoCapture(0)
|
13 |
+
stframe = st.empty()
|
14 |
|
15 |
+
# 加载 MobileNet SSD 预训练模型
|
16 |
+
model = tf.keras.applications.MobileNet(weights="imagenet")
|
|
|
17 |
|
18 |
+
def detect_objects(frame):
|
19 |
+
# 预处理图像
|
20 |
+
image_resized = cv2.resize(frame, (224, 224))
|
21 |
+
image_array = np.expand_dims(image_resized, axis=0)
|
22 |
+
processed_image = preprocess_input(image_array)
|
23 |
+
|
24 |
+
# 使用模型进行预测
|
25 |
+
preds = model.predict(processed_image)
|
26 |
+
decoded_preds = decode_predictions(preds, top=3)[0] # 取前3个结果
|
27 |
+
objects = [f"{label}: {round(score * 100, 2)}%" for (_, label, score) in decoded_preds]
|
28 |
+
return objects
|
29 |
|
30 |
+
# 读取摄像头流并显示
|
31 |
+
while True:
|
32 |
+
ret, frame = video_capture.read()
|
33 |
+
if not ret:
|
34 |
+
st.write("无法读取摄像头数据。")
|
35 |
+
break
|
36 |
|
37 |
+
# 检测物体
|
38 |
+
objects = detect_objects(frame)
|
39 |
+
detected_text = " | ".join(objects)
|
40 |
|
41 |
+
# 显示检测结果
|
42 |
+
cv2.putText(frame, detected_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2, cv2.LINE_AA)
|
43 |
+
|
44 |
+
# 将 OpenCV 图像格式转换为 Streamlit 显示格式
|
45 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
46 |
+
stframe.image(frame_rgb, caption="检测到的物体", channels="RGB")
|