Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import cv2
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import time
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
# Placeholder function for analyzing images and returning descriptions
|
| 8 |
+
def analyze_image(image):
|
| 9 |
+
# Implement object recognition here
|
| 10 |
+
# This function should return a list of descriptions for detected objects
|
| 11 |
+
# For example:
|
| 12 |
+
return ["chair on the left", "table in the center", "cat on the right"]
|
| 13 |
+
|
| 14 |
+
def main():
|
| 15 |
+
st.title("Object Recognition Assistant for the Visually Impaired")
|
| 16 |
+
|
| 17 |
+
# Setup webcam capture
|
| 18 |
+
cap = cv2.VideoCapture(0) # Use 0 for the default webcam
|
| 19 |
+
|
| 20 |
+
FRAME_WINDOW = st.image([])
|
| 21 |
+
last_time = time.time()
|
| 22 |
+
|
| 23 |
+
while True:
|
| 24 |
+
ret, frame = cap.read()
|
| 25 |
+
if not ret:
|
| 26 |
+
continue
|
| 27 |
+
|
| 28 |
+
# Convert the image color to RGB
|
| 29 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 30 |
+
img = Image.fromarray(frame)
|
| 31 |
+
|
| 32 |
+
# Display the current frame
|
| 33 |
+
FRAME_WINDOW.image(img)
|
| 34 |
+
|
| 35 |
+
# Check if 10 seconds have passed
|
| 36 |
+
if time.time() - last_time > 10:
|
| 37 |
+
last_time = time.time()
|
| 38 |
+
|
| 39 |
+
# Analyze the image and get descriptions
|
| 40 |
+
descriptions = analyze_image(img)
|
| 41 |
+
|
| 42 |
+
# Display the descriptions
|
| 43 |
+
st.write("Detected objects:")
|
| 44 |
+
for desc in descriptions:
|
| 45 |
+
st.write("- " + desc)
|
| 46 |
+
|
| 47 |
+
time.sleep(0.1)
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
main()
|