Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as functional | |
try: | |
from queue import Queue | |
except ImportError: | |
from Queue import Queue | |
from .functions import * | |
class ABN(nn.Module): | |
"""Activated Batch Normalization | |
This gathers a `BatchNorm2d` and an activation function in a single module | |
""" | |
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01): | |
"""Creates an Activated Batch Normalization module | |
Parameters | |
---------- | |
num_features : int | |
Number of feature channels in the input and output. | |
eps : float | |
Small constant to prevent numerical issues. | |
momentum : float | |
Momentum factor applied to compute running statistics as. | |
affine : bool | |
If `True` apply learned scale and shift transformation after normalization. | |
activation : str | |
Name of the activation functions, one of: `leaky_relu`, `elu` or `none`. | |
slope : float | |
Negative slope for the `leaky_relu` activation. | |
""" | |
super(ABN, self).__init__() | |
self.num_features = num_features | |
self.affine = affine | |
self.eps = eps | |
self.momentum = momentum | |
self.activation = activation | |
self.slope = slope | |
if self.affine: | |
self.weight = nn.Parameter(torch.ones(num_features)) | |
self.bias = nn.Parameter(torch.zeros(num_features)) | |
else: | |
self.register_parameter('weight', None) | |
self.register_parameter('bias', None) | |
self.register_buffer('running_mean', torch.zeros(num_features)) | |
self.register_buffer('running_var', torch.ones(num_features)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
nn.init.constant_(self.running_mean, 0) | |
nn.init.constant_(self.running_var, 1) | |
if self.affine: | |
nn.init.constant_(self.weight, 1) | |
nn.init.constant_(self.bias, 0) | |
def forward(self, x): | |
x = functional.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias, | |
self.training, self.momentum, self.eps) | |
if self.activation == ACT_RELU: | |
return functional.relu(x, inplace=True) | |
elif self.activation == ACT_LEAKY_RELU: | |
return functional.leaky_relu(x, negative_slope=self.slope, inplace=True) | |
elif self.activation == ACT_ELU: | |
return functional.elu(x, inplace=True) | |
else: | |
return x | |
def __repr__(self): | |
rep = '{name}({num_features}, eps={eps}, momentum={momentum},' \ | |
' affine={affine}, activation={activation}' | |
if self.activation == "leaky_relu": | |
rep += ', slope={slope})' | |
else: | |
rep += ')' | |
return rep.format(name=self.__class__.__name__, **self.__dict__) | |
class InPlaceABN(ABN): | |
"""InPlace Activated Batch Normalization""" | |
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01): | |
"""Creates an InPlace Activated Batch Normalization module | |
Parameters | |
---------- | |
num_features : int | |
Number of feature channels in the input and output. | |
eps : float | |
Small constant to prevent numerical issues. | |
momentum : float | |
Momentum factor applied to compute running statistics as. | |
affine : bool | |
If `True` apply learned scale and shift transformation after normalization. | |
activation : str | |
Name of the activation functions, one of: `leaky_relu`, `elu` or `none`. | |
slope : float | |
Negative slope for the `leaky_relu` activation. | |
""" | |
super(InPlaceABN, self).__init__(num_features, eps, momentum, affine, activation, slope) | |
def forward(self, x): | |
x, _, _ = inplace_abn(x, self.weight, self.bias, self.running_mean, self.running_var, | |
self.training, self.momentum, self.eps, self.activation, self.slope) | |
return x | |
class InPlaceABNSync(ABN): | |
"""InPlace Activated Batch Normalization with cross-GPU synchronization | |
This assumes that it will be replicated across GPUs using the same mechanism as in `nn.DistributedDataParallel`. | |
""" | |
def forward(self, x): | |
x, _, _ = inplace_abn_sync(x, self.weight, self.bias, self.running_mean, self.running_var, | |
self.training, self.momentum, self.eps, self.activation, self.slope) | |
return x | |
def __repr__(self): | |
rep = '{name}({num_features}, eps={eps}, momentum={momentum},' \ | |
' affine={affine}, activation={activation}' | |
if self.activation == "leaky_relu": | |
rep += ', slope={slope})' | |
else: | |
rep += ')' | |
return rep.format(name=self.__class__.__name__, **self.__dict__) | |