|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer |
|
import streamlit as st |
|
import json |
|
from predict import run_prediction |
|
|
|
st.set_page_config(layout="wide") |
|
|
|
model_list = ['roberta-base-cuad', |
|
'roberta-large-cuad', |
|
'deberta-xlarge-cuad'] |
|
st.sidebar.header("Select CUAD Model") |
|
model_checkpoint = st.sidebar.radio("", model_list) |
|
|
|
st.sidebar.write("Project: https://www.atticusprojectai.org/cuad") |
|
st.sidebar.write("Git Hub: https://github.com/TheAtticusProject/cuad") |
|
st.sidebar.write("CUAD Dataset: https://huggingface.co/datasets/cuad") |
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_model(): |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint) |
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint , use_fast=False) |
|
return model, tokenizer |
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_questions(): |
|
with open('test.json') as json_file: |
|
data = json.load(json_file) |
|
|
|
questions = [] |
|
for i, q in enumerate(data['data'][0]['paragraphs'][0]['qas']): |
|
question = data['data'][0]['paragraphs'][0]['qas'][i]['question'] |
|
questions.append(question) |
|
return questions |
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_contracts(): |
|
with open('test.json') as json_file: |
|
data = json.load(json_file) |
|
|
|
contracts = [] |
|
for i, q in enumerate(data['data']): |
|
contract = ' '.join(data['data'][i]['paragraphs'][0]['context'].split()) |
|
contracts.append(contract) |
|
return contracts |
|
|
|
model, tokenizer = load_model() |
|
questions = load_questions() |
|
contracts = load_contracts() |
|
|
|
contract = contracts[0] |
|
|
|
st.header("Contract Understanding Atticus Dataset (CUAD) Demo") |
|
st.write("Based on https://github.com/marshmellow77/cuad-demo") |
|
|
|
|
|
question = st.selectbox('Choose one of the 41 queries from the CUAD dataset:', questions) |
|
|
|
|
|
contract_type = st.radio("Select Contract", ("Sample Contract", "New Contract")) |
|
if contract_type == "Sample Contract": |
|
sample_contract_num = st.slider("Select Sample Contract #") |
|
contract = contracts[sample_contract_num] |
|
with st.expander(f"Sample Contract #{sample_contract_num}"): |
|
st.write(contract) |
|
else: |
|
contract = st.text_area("Input New Contract", "", height=256) |
|
|
|
Run_Button = st.button("Run", key=None) |
|
if Run_Button == True and not len(contract)==0 and not len(question)==0: |
|
|
|
prediction = run_prediction(question, contract, 'C:/Users/akden/Desktop/Legal NLP/CUAD/cuad-models/roberta-base/') |
|
st.write("Answer: " + prediction.strip()) |
|
|