Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
from PyPDF2 import PdfReader
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 6 |
+
import torch
|
| 7 |
+
import numpy as np
|
| 8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 9 |
+
|
| 10 |
+
# Load sentence transformer for embeddings
|
| 11 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
| 12 |
+
|
| 13 |
+
# Load Zephyr model (use accelerate for GPU/CPU device map)
|
| 14 |
+
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 16 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
+
model_name,
|
| 18 |
+
torch_dtype=torch.float16,
|
| 19 |
+
device_map="auto" # β
Works if 'accelerate' is installed
|
| 20 |
+
)
|
| 21 |
+
rag_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 22 |
+
|
| 23 |
+
# Function to extract text from PDF
|
| 24 |
+
def read_pdf(file_path):
|
| 25 |
+
try:
|
| 26 |
+
with open(file_path, "rb") as file:
|
| 27 |
+
reader = PdfReader(file)
|
| 28 |
+
text = ""
|
| 29 |
+
for page in reader.pages:
|
| 30 |
+
page_text = page.extract_text()
|
| 31 |
+
if page_text:
|
| 32 |
+
text += page_text + "\n"
|
| 33 |
+
return text
|
| 34 |
+
except Exception as e:
|
| 35 |
+
return f"Error reading PDF: {str(e)}"
|
| 36 |
+
|
| 37 |
+
# Function to split text into chunks (~500 words)
|
| 38 |
+
def chunk_text(text, chunk_size=500):
|
| 39 |
+
words = text.split()
|
| 40 |
+
return [" ".join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)]
|
| 41 |
+
|
| 42 |
+
# Function to find top-k most relevant chunks
|
| 43 |
+
def retrieve_relevant_chunks(question, chunks, top_k=3):
|
| 44 |
+
chunk_embeddings = embedder.encode(chunks)
|
| 45 |
+
question_embedding = embedder.encode([question])
|
| 46 |
+
scores = cosine_similarity(question_embedding, chunk_embeddings)[0]
|
| 47 |
+
top_indices = np.argsort(scores)[-top_k:][::-1]
|
| 48 |
+
return "\n\n".join([chunks[i] for i in top_indices])
|
| 49 |
+
|
| 50 |
+
# Main function to process question and return answer
|
| 51 |
+
def answer_question(uploaded_file, user_question):
|
| 52 |
+
if uploaded_file is None:
|
| 53 |
+
return "β Please upload a PDF file."
|
| 54 |
+
|
| 55 |
+
file_path = uploaded_file.name
|
| 56 |
+
document_text = read_pdf(file_path)
|
| 57 |
+
|
| 58 |
+
if not document_text or not isinstance(document_text, str):
|
| 59 |
+
return "β Document is empty or could not be read."
|
| 60 |
+
|
| 61 |
+
chunks = chunk_text(document_text)
|
| 62 |
+
if not chunks:
|
| 63 |
+
return "β Document is too short to process."
|
| 64 |
+
|
| 65 |
+
relevant_context = retrieve_relevant_chunks(user_question, chunks)
|
| 66 |
+
|
| 67 |
+
prompt = f"""You are a helpful assistant. Use the context below to answer the user's question.\n\nContext:\n{relevant_context}\n\nQuestion: {user_question}\nAnswer:"""
|
| 68 |
+
|
| 69 |
+
try:
|
| 70 |
+
result = rag_pipeline(prompt, max_new_tokens=300, do_sample=True, temperature=0.7)
|
| 71 |
+
answer = result[0]["generated_text"].split("Answer:")[-1].strip()
|
| 72 |
+
return str(answer)
|
| 73 |
+
except Exception as e:
|
| 74 |
+
return f"β Error generating answer: {str(e)}"
|
| 75 |
+
|
| 76 |
+
# Gradio interface
|
| 77 |
+
def create_interface():
|
| 78 |
+
with gr.Blocks() as demo:
|
| 79 |
+
gr.Markdown("## π Ask Questions from a PDF Document (RAG using Zephyr 7B)")
|
| 80 |
+
|
| 81 |
+
file_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
| 82 |
+
question_input = gr.Textbox(label="Enter your question")
|
| 83 |
+
answer_output = gr.Textbox(label="Answer", lines=10)
|
| 84 |
+
|
| 85 |
+
ask_button = gr.Button("Ask")
|
| 86 |
+
ask_button.click(fn=answer_question, inputs=[file_input, question_input], outputs=answer_output)
|
| 87 |
+
|
| 88 |
+
return demo
|
| 89 |
+
|
| 90 |
+
if __name__ == "__main__":
|
| 91 |
+
demo = create_interface()
|
| 92 |
+
demo.launch()
|