|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
class Conv2d(nn.Module): |
|
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act = True, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.conv_block = nn.Sequential( |
|
nn.Conv2d(cin, cout, kernel_size, stride, padding), |
|
nn.BatchNorm2d(cout) |
|
) |
|
self.act = nn.ReLU() |
|
self.residual = residual |
|
self.use_act = use_act |
|
|
|
def forward(self, x): |
|
out = self.conv_block(x) |
|
if self.residual: |
|
out += x |
|
|
|
if self.use_act: |
|
return self.act(out) |
|
else: |
|
return out |
|
|
|
class SimpleWrapperV2(nn.Module): |
|
def __init__(self) -> None: |
|
super().__init__() |
|
self.audio_encoder = nn.Sequential( |
|
Conv2d(1, 32, kernel_size=3, stride=1, padding=1), |
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), |
|
|
|
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), |
|
|
|
Conv2d(64, 128, kernel_size=3, stride=3, padding=1), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), |
|
|
|
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1), |
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), |
|
|
|
Conv2d(256, 512, kernel_size=3, stride=1, padding=0), |
|
Conv2d(512, 512, kernel_size=1, stride=1, padding=0), |
|
) |
|
|
|
|
|
|
|
''' |
|
wav2lip_state_dict = torch.load('/apdcephfs_cq2/share_1290939/wenxuazhang/checkpoints/wav2lip.pth')['state_dict'] |
|
state_dict = self.audio_encoder.state_dict() |
|
|
|
for k,v in wav2lip_state_dict.items(): |
|
if 'audio_encoder' in k: |
|
print('init:', k) |
|
state_dict[k.replace('module.audio_encoder.', '')] = v |
|
self.audio_encoder.load_state_dict(state_dict) |
|
''' |
|
|
|
self.mapping1 = nn.Linear(512+64+1, 64) |
|
|
|
|
|
nn.init.constant_(self.mapping1.bias, 0.) |
|
|
|
def forward(self, x, ref, ratio): |
|
x = self.audio_encoder(x).view(x.size(0), -1) |
|
ref_reshape = ref.reshape(x.size(0), -1) |
|
ratio = ratio.reshape(x.size(0), -1) |
|
|
|
y = self.mapping1(torch.cat([x, ref_reshape, ratio], dim=1)) |
|
out = y.reshape(ref.shape[0], ref.shape[1], -1) |
|
return out |
|
|