akashAD commited on
Commit
df90108
1 Parent(s): 0baeaf6

Create yolov5_classify.py

Browse files
Files changed (1) hide show
  1. yolov5_classify.py +45 -0
yolov5_classify.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from models.common import DetectMultiBackend
3
+ from torchvision import transforms
4
+ import gradio as gr
5
+ import requests
6
+ from PIL import Image
7
+
8
+ weights='/content/drive/MyDrive/yolov5/yolov5s-cls.pt'
9
+
10
+ model = DetectMultiBackend(weights)
11
+
12
+ # load imagenet 1000 labels
13
+ response = requests.get("https://git.io/JJkYN")
14
+ labels = response.text.split("\n")
15
+
16
+ def preprocess_image(inp):
17
+ # Define the preprocessing steps
18
+ preprocess = transforms.Compose([
19
+ transforms.Resize(256),
20
+ transforms.CenterCrop(224),
21
+ transforms.ToTensor(),
22
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
23
+ ])
24
+ # Apply the preprocessing steps to the image
25
+ image = preprocess(inp)
26
+ # Convert the image to a PyTorch tensor
27
+ image = torch.tensor(image).unsqueeze(0)
28
+
29
+ return image
30
+
31
+ def predict(inp):
32
+
33
+ with torch.no_grad():
34
+ prediction = torch.nn.functional.softmax(model(preprocess_image(inp))[0], dim=0)
35
+
36
+ print(prediction)
37
+ confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
38
+ return confidences
39
+
40
+
41
+ gr.Interface(fn=predict,
42
+ inputs=gr.Image(type="pil"),
43
+ outputs="label",labels=labels).launch(debug=True)
44
+
45
+ #outputs=gr.Label(num_top_classes=5))