emotion_app / app.py
akar49's picture
Update app.py
0c7d89c verified
# Facial expression classifier
import os
from fastai.vision.all import *
import gradio as gr
# Emotion
learn_emotion = load_learner('emotions_vgg19.pkl')
learn_emotion_labels = learn_emotion.dls.vocab
# Sentiment
learn_sentiment = load_learner('sentiment_vgg19.pkl')
learn_sentiment_labels = learn_sentiment.dls.vocab
# Predict
def predict(img):
img = PILImage.create(img)
pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img)
pred_sentiment, pred_sentiment_idx, probs_sentiment = learn_sentiment.predict(img)
#emotions = {f'emotion_{learn_emotion_labels[i]}': float(probs_emotion[i]) for i in range(len(learn_emotion_labels))}
#sentiments = {f'sentiment_{learn_sentiment_labels[i]}': float(probs_sentiment[i]) for i in range(len(learn_sentiment_labels))}
emotions = {learn_emotion_labels[i]: float(probs_emotion[i]) for i in range(len(learn_emotion_labels))}
sentiments = {learn_sentiment_labels[i]: float(probs_sentiment[i]) for i in range(len(learn_sentiment_labels))}
return [emotions, sentiments] #{**emotions, **sentiments}
# Gradio
title = "Facial Emotion and Sentiment Detector"
description = gr.Markdown(
"""Ever wondered what a person might be feeling looking at their picture?
Well, now you can! Try this fun app. Just upload a facial image in JPG or
PNG format. Voila! you can now see what they might have felt when the picture
was taken.
**Tip**: Be sure to only include face to get best results. Check some sample images
below for inspiration!""").value
article = gr.Markdown(
"""**DISCLAIMER:** This model does not reveal the actual emotional state of a person. Use and
Positive (Happy, Surprise)
Negative (Angry, Disgust, Fear, Sad)
Neutral (Neutral)
**MODEL:** VGG19""").value
enable_queue=True
examples = ['happy1.jpg', 'happy2.jpg', 'angry1.png', 'angry2.jpg', 'neutral1.jpg', 'neutral2.jpg']
gr.Interface(fn = predict,
inputs = gr.Image( image_mode='L'),
outputs = [gr.Label(label='Emotion'), gr.Label(label='Sentiment')], #gr.Label(),
title = title,
examples = examples,
description = description,
article=article,
allow_flagging='never').launch()