Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms.functional import normalize | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
# from gradio_imageslider import ImageSlider | |
from briarmbg import BriaRMBG | |
import PIL | |
from PIL import Image | |
from typing import Tuple | |
import cv2 | |
import os | |
import shutil | |
import glob | |
from tqdm import tqdm | |
from ffmpy import FFmpeg | |
net = BriaRMBG() | |
# model_path = "./model1.pth" | |
model_path = hf_hub_download("briaai/RMBG-1.4", "model.pth") | |
if torch.cuda.is_available(): | |
net.load_state_dict(torch.load(model_path)) | |
net = net.cuda() | |
print("GPU is available") | |
else: | |
net.load_state_dict(torch.load(model_path, map_location="cpu")) | |
print("GPU is NOT available") | |
net.eval() | |
def resize_image(image): | |
image = image.convert("RGB") | |
model_input_size = (1024, 1024) | |
image = image.resize(model_input_size, Image.BILINEAR) | |
return image | |
def process(image): | |
# prepare input | |
orig_image = Image.fromarray(image) | |
w, h = orig_im_size = orig_image.size | |
image = resize_image(orig_image) | |
im_np = np.array(image) | |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) | |
im_tensor = torch.unsqueeze(im_tensor, 0) | |
im_tensor = torch.divide(im_tensor, 255.0) | |
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) | |
if torch.cuda.is_available(): | |
im_tensor = im_tensor.cuda() | |
# inference | |
result = net(im_tensor) | |
# post process | |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0) | |
ma = torch.max(result) | |
mi = torch.min(result) | |
result = (result - mi) / (ma - mi) | |
# image to pil | |
im_array = (result * 255).cpu().data.numpy().astype(np.uint8) | |
pil_im = Image.fromarray(np.squeeze(im_array)) | |
# paste the mask on the original image | |
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) | |
new_im.paste(orig_image, mask=pil_im) | |
# new_orig_image = orig_image.convert('RGBA') | |
return new_im | |
# return [new_orig_image, new_im] | |
def process_video(video, key_color): | |
workspace = "./temp" | |
original_video_name_without_ext = os.path.splitext(os.path.basename(video))[0] | |
os.makedirs(workspace, exist_ok=True) | |
os.makedirs(f"{workspace}/frames", exist_ok=True) | |
os.makedirs(f"{workspace}/result", exist_ok=True) | |
os.makedirs("./video_result", exist_ok=True) | |
video_file = cv2.VideoCapture(video) | |
fps = video_file.get(cv2.CAP_PROP_FPS) | |
# まず、videoを読み込んで、./frames/にフレームを保存する | |
# fase, load video and save frames to ./frames/ | |
def extract_frames(): | |
success, frame = video_file.read() | |
frame_num = 0 | |
with tqdm( | |
total=None, | |
desc="Extracting frames", | |
) as pbar: | |
while success: | |
file_name = f"{workspace}/frames/{frame_num:015d}.png" | |
cv2.imwrite(file_name, frame) | |
success, frame = video_file.read() | |
frame_num += 1 | |
pbar.update(1) | |
video_file.release() | |
return | |
extract_frames() | |
# それぞれのフレームに対して処理を行う | |
# process each frame | |
def process_frame(frame_file): | |
image = cv2.imread(frame_file) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
new_image = process(image) | |
# key_colorを背景にする | |
# set key_color as background | |
key_back_image = Image.new("RGBA", new_image.size, key_color) | |
new_image = Image.alpha_composite(key_back_image, new_image) | |
new_image.save(frame_file) | |
frame_files = sorted(glob.glob(f"{workspace}/frames/*.png")) | |
with tqdm(total=len(frame_files), desc="Processing frames") as pbar: | |
for file in frame_files: | |
process_frame(file) | |
pbar.update(1) | |
# frameからvideoを作成 | |
# create video from frames | |
# first_frame = cv2.imread(frame_files[0]) | |
# h, w, _ = first_frame.shape | |
# fourcc = cv2.VideoWriter_fourcc(*"avc1") | |
# new_video = cv2.VideoWriter(f"{workspace}/result/video.mp4", fourcc, fps, (w, h)) | |
# for file in frame_files: | |
# image = cv2.imread(file) | |
# new_video.write(image) | |
# new_video.release() | |
# 上のコードをffmpyで書き直す | |
# rewrite the above code with ffmpy | |
ff = FFmpeg( | |
inputs={f"{workspace}/frames/%015d.png": f"-r {fps}"}, | |
outputs={ | |
f"{workspace}/result/video.mp4": f"-c:v libx264 -vf fps={fps},format=yuv420p -hide_banner -loglevel error -y" | |
}, | |
) | |
ff.run() | |
# issue | |
# なぜかkey_colorの背景色が暗くなる | |
# idk why but key_color background color becomes dark | |
ff2 = FFmpeg( | |
inputs={f"{workspace}/result/video.mp4": None, f"{video}": None}, | |
outputs={ | |
f"./video_result/{original_video_name_without_ext}_BGremoved.mp4": "-c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 -shortest -hide_banner -loglevel error -y" | |
}, | |
) | |
ff2.run() | |
# 本当は透過の動画が良かったけど互換性がないのでボツ | |
# I wanted to make a transparent video, but it's not compatible, so I gave up | |
# subprocess.run( | |
# f'ffmpeg -framerate {fps} -i {workspace}/frames/%015d.png -auto-alt-ref 0 -c:v libvpx "./video_result/{original_video_name_without_ext}_BGremoved.webm" -hide_banner -loglevel error -y', | |
# shell=True, | |
# check=True, | |
# ) | |
# クロマキー用なので音声いらないじゃん | |
# audio is not needed | |
# subprocess.run( | |
# f'ffmpeg -i "./video_result/{original_video_name_without_ext}_BGremoved.webm" -c:v libx264 -c:a aac -strict experimental -b:a 192k ./demo/demo.mp4 -hide_banner -loglevel error -y', | |
# shell=True, | |
# check=True, | |
# ) | |
# ゴミ削除 | |
# remove garbage | |
shutil.rmtree(workspace) | |
return f"./video_result/{original_video_name_without_ext}_BGremoved.mp4" | |
gr.Markdown("## BRIA RMBG 1.4") | |
gr.HTML( | |
""" | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
This is a demo for BRIA RMBG 1.4 that using | |
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone. | |
</p> | |
""" | |
) | |
title = "Background Removal" | |
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br> | |
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br> | |
""" | |
examples = [ | |
["./input.jpg"], | |
] | |
title2 = "Background Removal For Video" | |
description2 = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br> | |
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br> | |
Also, you can remove the background from the video.<br>You may have to wait a little longer for the video to process as each frame in video will be processed, so using strong GPU locally is recommended.<br> | |
""" | |
# output = ImageSlider(position=0.5,label='Image without background', type="pil", show_download_button=True) | |
# demo = gr.Interface(fn=process,inputs="image", outputs=output, examples=examples, title=title, description=description) | |
demo1 = gr.Interface( | |
fn=process, | |
inputs="image", | |
outputs="image", | |
title=title, | |
description=description, | |
examples=examples, | |
api_name="demo1", | |
) | |
demo2 = gr.Interface( | |
fn=process_video, | |
inputs=[ | |
gr.Video(label="Video"), | |
gr.ColorPicker(label="Key Color(Background color)"), | |
], | |
outputs="video", | |
title=title2, | |
description=description2, | |
api_name="demo2", | |
) | |
demo = gr.TabbedInterface( | |
interface_list=[demo1, demo2], | |
tab_names=["Image", "Video"], | |
) | |
if __name__ == "__main__": | |
demo.launch(share=False) | |