Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
app.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
from diffusers import (
|
8 |
+
DiffusionPipeline,
|
9 |
+
StableDiffusionControlNetPipeline,
|
10 |
+
ControlNetModel
|
11 |
+
)
|
12 |
+
from peft import PeftModel
|
13 |
+
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
|
16 |
+
LORA_MODEL = "akaUNik/hw5-homm3-lora-15"
|
17 |
+
LORA_BASE_MODEL = "runwayml/stable-diffusion-v1-5"
|
18 |
+
|
19 |
+
# Model list including LoRA model
|
20 |
+
MODEL_LIST = [
|
21 |
+
"runwayml/stable-diffusion-v1-5",
|
22 |
+
"stabilityai/sdxl-turbo",
|
23 |
+
"stabilityai/stable-diffusion-2-1",
|
24 |
+
LORA_MODEL, # LoRA model option
|
25 |
+
]
|
26 |
+
|
27 |
+
# ControlNet modes list with aliases
|
28 |
+
CONTROLNET_MODES = {
|
29 |
+
"Canny Edge Detection": "lllyasviel/control_v11p_sd15_canny",
|
30 |
+
"Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p",
|
31 |
+
"Inpainting": "lllyasviel/control_v11p_sd15_inpaint",
|
32 |
+
"Multi-Level Line Segments": "lllyasviel/control_v11p_sd15_mlsd",
|
33 |
+
"Depth Estimation": "lllyasviel/control_v11f1p_sd15_depth",
|
34 |
+
"Surface Normal Estimation": "lllyasviel/control_v11p_sd15_normalbae",
|
35 |
+
"Image Segmentation": "lllyasviel/control_v11p_sd15_seg",
|
36 |
+
"Line Art Generation": "lllyasviel/control_v11p_sd15_lineart",
|
37 |
+
"Anime Line Art": "lllyasviel/control_v11p_sd15_lineart_anime",
|
38 |
+
"Human Pose Estimation": "lllyasviel/control_v11p_sd15_openpose",
|
39 |
+
"Scribble-Based Generation": "lllyasviel/control_v11p_sd15_scribble",
|
40 |
+
"Soft Edge Generation": "lllyasviel/control_v11p_sd15_softedge",
|
41 |
+
"Image Shuffling": "lllyasviel/control_v11e_sd15_shuffle",
|
42 |
+
"Image Tiling": "lllyasviel/control_v11f1e_sd15_tile",
|
43 |
+
}
|
44 |
+
|
45 |
+
if torch.cuda.is_available():
|
46 |
+
torch_dtype = torch.float16
|
47 |
+
else:
|
48 |
+
torch_dtype = torch.float32
|
49 |
+
|
50 |
+
# Cache to avoid re-initializing pipelines repeatedly
|
51 |
+
model_cache = {}
|
52 |
+
|
53 |
+
MAX_SEED = np.iinfo(np.int32).max
|
54 |
+
MAX_IMAGE_SIZE = 512
|
55 |
+
|
56 |
+
def infer(
|
57 |
+
model_id,
|
58 |
+
prompt,
|
59 |
+
negative_prompt,
|
60 |
+
seed,
|
61 |
+
randomize_seed,
|
62 |
+
width,
|
63 |
+
height,
|
64 |
+
guidance_scale,
|
65 |
+
num_inference_steps,
|
66 |
+
lora_scale,
|
67 |
+
controlnet_enable,
|
68 |
+
controlnet_mode,
|
69 |
+
controlnet_strength,
|
70 |
+
controlnet_image,
|
71 |
+
ip_adapter_enable,
|
72 |
+
ip_adapter_scale,
|
73 |
+
ip_adapter_image,
|
74 |
+
progress=gr.Progress(track_tqdm=True),
|
75 |
+
):
|
76 |
+
if randomize_seed:
|
77 |
+
seed = random.randint(0, MAX_SEED)
|
78 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
79 |
+
|
80 |
+
# Cache
|
81 |
+
# if (model_id, controlnet_enable, controlnet_image, controlnet_mode) in model_cache:
|
82 |
+
# pipe = model_cache[(model_id, controlnet_enable, controlnet_image, controlnet_mode)]
|
83 |
+
# else:
|
84 |
+
|
85 |
+
pipe = None
|
86 |
+
if controlnet_enable and controlnet_image:
|
87 |
+
controlnet_model = ControlNetModel.from_pretrained(
|
88 |
+
CONTROLNET_MODES.get(controlnet_mode),
|
89 |
+
torch_dtype=torch_dtype
|
90 |
+
)
|
91 |
+
if model_id == LORA_MODEL:
|
92 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
93 |
+
LORA_BASE_MODEL,
|
94 |
+
controlnet=controlnet_model,
|
95 |
+
torch_dtype=torch_dtype
|
96 |
+
)
|
97 |
+
else:
|
98 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
99 |
+
model_id,
|
100 |
+
controlnet=controlnet_model,
|
101 |
+
torch_dtype=torch_dtype
|
102 |
+
)
|
103 |
+
else:
|
104 |
+
if model_id == LORA_MODEL:
|
105 |
+
|
106 |
+
# Use the specified base model for your LoRA adapter.
|
107 |
+
pipe = DiffusionPipeline.from_pretrained(
|
108 |
+
LORA_BASE_MODEL,
|
109 |
+
torch_dtype=torch_dtype
|
110 |
+
)
|
111 |
+
|
112 |
+
# Load the LoRA weights
|
113 |
+
pipe.unet = PeftModel.from_pretrained(
|
114 |
+
pipe.unet,
|
115 |
+
model_id,
|
116 |
+
subfolder="unet",
|
117 |
+
torch_dtype=torch_dtype
|
118 |
+
)
|
119 |
+
pipe.text_encoder = PeftModel.from_pretrained(
|
120 |
+
pipe.text_encoder,
|
121 |
+
model_id,
|
122 |
+
subfolder="text_encoder",
|
123 |
+
torch_dtype=torch_dtype
|
124 |
+
)
|
125 |
+
else:
|
126 |
+
pipe = DiffusionPipeline.from_pretrained(
|
127 |
+
model_id,
|
128 |
+
torch_dtype=torch_dtype
|
129 |
+
)
|
130 |
+
|
131 |
+
if ip_adapter_enable:
|
132 |
+
pipe.load_ip_adapter(
|
133 |
+
"h94/IP-Adapter",
|
134 |
+
subfolder="models",
|
135 |
+
weight_name="ip-adapter-plus_sd15.bin"
|
136 |
+
)
|
137 |
+
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
138 |
+
|
139 |
+
pipe.safety_checker = None
|
140 |
+
pipe.to(device)
|
141 |
+
# model_cache[(model_id, controlnet_enable, controlnet_image, controlnet_mode)] = pipe
|
142 |
+
|
143 |
+
image = pipe(
|
144 |
+
prompt=prompt,
|
145 |
+
image=controlnet_image if controlnet_enable else None,
|
146 |
+
negative_prompt=negative_prompt,
|
147 |
+
guidance_scale=guidance_scale,
|
148 |
+
num_inference_steps=num_inference_steps,
|
149 |
+
width=width,
|
150 |
+
height=height,
|
151 |
+
generator=generator,
|
152 |
+
cross_attention_kwargs={"scale": lora_scale},
|
153 |
+
controlnet_conditioning_scale=controlnet_strength,
|
154 |
+
ip_adapter_image=ip_adapter_image if ip_adapter_enable else None
|
155 |
+
).images[0]
|
156 |
+
|
157 |
+
return image, seed
|
158 |
+
|
159 |
+
# @title Gradio
|
160 |
+
examples = [
|
161 |
+
"homm3_spell_icon midivial sticker of a cartoon character of a man in a lab coat and glasses, old lady screaming and laughing",
|
162 |
+
"homm3_spell_icon midivial sticker of a cartoon man with a mustache and a hat on, portrait bender from futurama, telegram sticker",
|
163 |
+
"homm3_spell_icon midivial sticker of a cartoon character with a gun in his hand",
|
164 |
+
]
|
165 |
+
|
166 |
+
css = """
|
167 |
+
#col-container {
|
168 |
+
margin: 0 auto;
|
169 |
+
max-width: 640px;
|
170 |
+
}
|
171 |
+
"""
|
172 |
+
|
173 |
+
with gr.Blocks(css=css) as demo:
|
174 |
+
with gr.Column(elem_id="col-container"):
|
175 |
+
gr.Markdown(" # Text-to-Image Gradio Template")
|
176 |
+
|
177 |
+
with gr.Row():
|
178 |
+
# Dropdown to select the model from Hugging Face
|
179 |
+
model_id = gr.Dropdown(
|
180 |
+
label="Model",
|
181 |
+
choices=MODEL_LIST,
|
182 |
+
value=MODEL_LIST[0], # Default model
|
183 |
+
)
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
prompt = gr.Text(
|
187 |
+
label="Prompt",
|
188 |
+
show_label=False,
|
189 |
+
max_lines=1,
|
190 |
+
placeholder="Enter your prompt",
|
191 |
+
container=False,
|
192 |
+
)
|
193 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
194 |
+
|
195 |
+
result = gr.Image(label="Result", show_label=False)
|
196 |
+
|
197 |
+
with gr.Accordion("Advanced Settings", open=False):
|
198 |
+
negative_prompt = gr.Text(
|
199 |
+
label="Negative prompt",
|
200 |
+
max_lines=1,
|
201 |
+
placeholder="Enter a negative prompt",
|
202 |
+
)
|
203 |
+
|
204 |
+
seed = gr.Slider(
|
205 |
+
label="Seed",
|
206 |
+
minimum=0,
|
207 |
+
maximum=MAX_SEED,
|
208 |
+
step=1,
|
209 |
+
value=42, # Default seed
|
210 |
+
)
|
211 |
+
|
212 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
213 |
+
|
214 |
+
with gr.Row():
|
215 |
+
width = gr.Slider(
|
216 |
+
label="Width",
|
217 |
+
minimum=256,
|
218 |
+
maximum=MAX_IMAGE_SIZE,
|
219 |
+
step=32,
|
220 |
+
value=512,
|
221 |
+
)
|
222 |
+
height = gr.Slider(
|
223 |
+
label="Height",
|
224 |
+
minimum=256,
|
225 |
+
maximum=MAX_IMAGE_SIZE,
|
226 |
+
step=32,
|
227 |
+
value=512,
|
228 |
+
)
|
229 |
+
|
230 |
+
with gr.Row():
|
231 |
+
guidance_scale = gr.Slider(
|
232 |
+
label="Guidance scale",
|
233 |
+
minimum=0.0,
|
234 |
+
maximum=20.0,
|
235 |
+
step=0.5,
|
236 |
+
value=7.0,
|
237 |
+
)
|
238 |
+
num_inference_steps = gr.Slider(
|
239 |
+
label="Number of inference steps",
|
240 |
+
minimum=1,
|
241 |
+
maximum=100,
|
242 |
+
step=1,
|
243 |
+
value=20,
|
244 |
+
)
|
245 |
+
|
246 |
+
# New slider for LoRA scale.
|
247 |
+
lora_scale = gr.Slider(
|
248 |
+
label="LoRA Scale",
|
249 |
+
minimum=0.0,
|
250 |
+
maximum=2.0,
|
251 |
+
step=0.1,
|
252 |
+
value=1.0,
|
253 |
+
info="Adjust the influence of the LoRA weights",
|
254 |
+
)
|
255 |
+
|
256 |
+
# --- ControlNet Settings ---
|
257 |
+
with gr.Accordion("ControlNet Settings", open=False):
|
258 |
+
controlnet_enable = gr.Checkbox(
|
259 |
+
label="Enable ControlNet",
|
260 |
+
value=False
|
261 |
+
)
|
262 |
+
with gr.Group(visible=False) as controlnet_group:
|
263 |
+
controlnet_mode = gr.Dropdown(
|
264 |
+
label="ControlNet Mode",
|
265 |
+
choices=list(CONTROLNET_MODES.keys()),
|
266 |
+
value=list(CONTROLNET_MODES.keys())[0],
|
267 |
+
)
|
268 |
+
controlnet_strength = gr.Slider(
|
269 |
+
label="ControlNet Conditioning Scale",
|
270 |
+
minimum=0.0,
|
271 |
+
maximum=1.0,
|
272 |
+
step=0.1,
|
273 |
+
value=0.7,
|
274 |
+
)
|
275 |
+
controlnet_image = gr.Image(
|
276 |
+
label="ControlNet Image",
|
277 |
+
type="pil"
|
278 |
+
)
|
279 |
+
|
280 |
+
def show_controlnet_options(enable):
|
281 |
+
return {controlnet_group: gr.update(visible=enable)}
|
282 |
+
|
283 |
+
controlnet_enable.change(
|
284 |
+
fn=show_controlnet_options,
|
285 |
+
inputs=controlnet_enable,
|
286 |
+
outputs=controlnet_group,
|
287 |
+
)
|
288 |
+
|
289 |
+
# --- IP-adapter Settings ---
|
290 |
+
with gr.Accordion("IP-adapter Settings", open=False):
|
291 |
+
ip_adapter_enable = gr.Checkbox(
|
292 |
+
label="Enable IP-adapter",
|
293 |
+
value=False
|
294 |
+
)
|
295 |
+
|
296 |
+
with gr.Group(visible=False) as ip_adapter_group:
|
297 |
+
ip_adapter_scale = gr.Slider(
|
298 |
+
label="IP-adapter Scale",
|
299 |
+
minimum=0.0,
|
300 |
+
maximum=2.0,
|
301 |
+
step=0.1,
|
302 |
+
value=1.0
|
303 |
+
)
|
304 |
+
ip_adapter_image = gr.Image(
|
305 |
+
label="IP-adapter Image",
|
306 |
+
type="pil"
|
307 |
+
)
|
308 |
+
|
309 |
+
# Show/hide IP-adapter parameters when checkbox is toggled
|
310 |
+
def show_ip_adapter_options(enable):
|
311 |
+
return {ip_adapter_group: gr.update(visible=enable)}
|
312 |
+
|
313 |
+
ip_adapter_enable.change(
|
314 |
+
fn=show_ip_adapter_options,
|
315 |
+
inputs=ip_adapter_enable,
|
316 |
+
outputs=ip_adapter_group,
|
317 |
+
)
|
318 |
+
|
319 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
320 |
+
gr.on(
|
321 |
+
triggers=[run_button.click, prompt.submit],
|
322 |
+
fn=infer,
|
323 |
+
inputs=[
|
324 |
+
model_id,
|
325 |
+
prompt,
|
326 |
+
negative_prompt,
|
327 |
+
seed,
|
328 |
+
randomize_seed,
|
329 |
+
width,
|
330 |
+
height,
|
331 |
+
guidance_scale,
|
332 |
+
num_inference_steps,
|
333 |
+
lora_scale,
|
334 |
+
controlnet_enable,
|
335 |
+
controlnet_mode,
|
336 |
+
controlnet_strength,
|
337 |
+
controlnet_image,
|
338 |
+
ip_adapter_enable,
|
339 |
+
ip_adapter_scale,
|
340 |
+
ip_adapter_image,
|
341 |
+
],
|
342 |
+
outputs=[result, seed],
|
343 |
+
)
|
344 |
+
|
345 |
+
# @title Run
|
346 |
+
|
347 |
+
if __name__ == "__main__":
|
348 |
+
demo.launch(debug=True) # show errors in colab notebook
|
ДЗ_6.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Добавляем больше опций для контроля генерации стикеров.
|
2 |
+
|
3 |
+
#### Цель:
|
4 |
+
|
5 |
+
Добавить в пользовательский интерфейс Gradio опции, позволяющие использовать ControlNet и IP-adapter для управления генерацией стикеров, а также обеспечить возможность загрузки изображений, необходимых для их работы.
|
6 |
+
|
7 |
+
#### Задача:
|
8 |
+
|
9 |
+
В ваш интерфейс на HuggingFace добавьте новые элементы управления:
|
10 |
+
- Чекбокс для включения/отключения использования ControlNet. При активации ControlNet отобразите дополнительные опции:
|
11 |
+
- Слайдер для настройки интенсивности влияния (`control_strength`).
|
12 |
+
- Выпадающий список для выбора режима работы ControlNet (например, `edge_detection`, `pose_estimation` другие из [репозитория](https://github.com/lllyasviel/ControlNet)).
|
13 |
+
- Окно для загрузки изображений, используемых для настройки ControlNet.
|
14 |
+
- Чекбокс для включения/отключения IP-adapter. При активации IP-adapter добавьте возможность регулировки его параметров:
|
15 |
+
- Слайдер для настройки `ip_adapter_scale`.
|
16 |
+
- Окно для загрузки изображений для IP-adapter.
|
17 |
+
|
18 |
+
Проверьте работу интерфейса, запустив тестовые генерации с разными комбинациями настроек, чтобы убедиться, что изменения отражаются корректно. Отдельно проверьте, что можно включать и отключать ControlNet и IP-adapter как по отдельности, так и вместе.
|
19 |
+
|
20 |
+
|
21 |
+
#### Как сдать домашнее задание
|
22 |
+
Для сдачи домашнего задания загрузите в ваш репозиторий код вашего Space из HuggingFace и публичную ссылку на него.
|