aka7774's picture
Update fn.py
fff5ee4 verified
raw
history blame
2.37 kB
import os
import io
import base64
import torch
from torch.cuda import amp
import numpy as np
from PIL import Image
from diffusers import AutoPipelineForText2Image, AutoencoderKL, DPMSolverMultistepScheduler
pipe = None
def load_model(_model = None, _vae = None, loras = []):
global pipe
_model = _model or 'cagliostrolab/animagine-xl-3.0'
if _vae:
# "stabilityai/sdxl-vae"
vae = AutoencoderKL.from_pretrained(_vae, torch_dtype=torch.float16)
pipe = AutoPipelineForText2Image.from_pretrained(
_model,
torch_dtype=torch.float16,
vae=vae,
)
else:
pipe = AutoPipelineForText2Image.from_pretrained(
_model,
torch_dtype=torch.float16,
)
# DPM++ 2M Karras
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config,
algorithm_type="sde-dpmsolver++",
use_karras_sigmas=True
)
for lora in loras:
pipe.load_lora_weights(".", weight_name=lora + ".safetensors")
if torch.cuda.is_available():
pipe.to("cuda")
pipe.enable_vae_slicing()
def pil_to_webp(img):
buffer = io.BytesIO()
img.save(buffer, 'webp')
return buffer.getvalue()
def bin_to_base64(bin):
return base64.b64encode(bin).decode('ascii')
def run(prompt = None, negative_prompt = None, model = None, guidance_scale = None, steps = None, seed = None):
global pipe
if not pipe:
load_model(model)
_prompt = "masterpiece, best quality, 1girl, portrait"
_negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name"
prompt = prompt or _prompt
negative_prompt = negative_prompt or _negative_prompt
guidance_scale = float(guidance_scale) if guidance_scale else 5.0
steps = int(steps) if steps else 20
seed = int(seed) if seed else -1
generator = None
if seed != -1:
generator = torch.manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
clip_skip=2,
generator=generator,
).images[0]
return image