derrobot / app.py
ak5005's picture
formality feedback
c75b701
import json
import random
import time
import streamlit as st
from categories.accuracy import *
from categories.fluency import *
from categories.style import *
from modules.nav import Navbar
Navbar()
# Load translations from a JSON file to be used by the bot
def load_translations():
try:
with open("./data/translations.json", "r") as f:
return json.loads(f.read())
except Exception as e:
print(e)
return None
def score(score):
if score > 90:
return "excellent!"
elif score > 70:
return "good."
elif score > 50:
return "fair."
else:
return "poor."
if "translations" not in st.session_state:
st.session_state.translations = load_translations()
def response_generator(prompt):
source = st.session_state.german
acc = accuracy(source, prompt)
ppl = pseudo_perplexity(prompt)
gre = grammar_errors(prompt)
frm = formality(source, prompt)
total_score = (
0.5 * acc["score"]
+ 0.2 * gre["score"]
+ 0.3 * ppl["score"]
+ 0.005 * frm["normalized"]
)
if "scores" not in st.session_state:
st.session_state.scores = []
st.session_state.scores.append(total_score)
response = f"Your translation quality was {score(total_score)}\n\n"
acc_s = acc["score"]
response += f"\nYour accuracy score is {score(acc_s)}\n"
for error in acc["errors"]:
response += f" - {error['message']}\n"
gre_s = gre["score"]
ppl_s = ppl["score"]
response += f"\nYour fluency score is {score(0.4 * gre_s + 0.6 * ppl_s)}\n"
for error in gre["errors"]:
response += f" - {error['message']}\n"
for error in ppl["errors"]:
response += f" - {error['message']}\n"
frm_s = frm["normalized"]
response += f"\nYour formality score is {score(frm_s)}\n"
if frm["src_label"] != frm["trg_label"]:
response += (
f"\n - Tone mismatch: "
f"your translation is β€œ{frm['trg_label']}”\n"
f"but likely should be β€œ{frm['src_label']}”. "
)
lines = response.split("\n")
for line in lines:
for word in line.split():
yield word + " "
time.sleep(0.05)
# After each line, yield a newline character or trigger a line break in Markdown
yield "\n"
def translation_generator():
# Check if translations are available and not empty
if st.session_state.translations:
# Randomly select a translation from the list
st.session_state.german = random.choice(st.session_state.translations)["german"]
else:
st.error("No translations available.")
return
message = (
f"Please translate the following sentence into English:"
f" {st.session_state.german}"
)
lines = message.split("\n")
for line in lines:
for word in line.split():
yield word + " "
time.sleep(0.05)
# After each line, yield a newline character or trigger a line break in Markdown
yield "\n"
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [
{
"role": "assistant",
"content": (
"Hello! I am a translation bot. Please translate the following"
" sentence into English: 'Das ist ein Test.'"
),
}
]
st.session_state.german = "Das ist ein Test."
if "translations" not in st.session_state:
try:
with open("translations.json", "r") as f:
st.session_state.translations = json.loads(f.read())
print(st.session_state.translations)
except (FileNotFoundError, json.JSONDecodeError):
st.session_state.translations = None
# Create an empty translations dictionary if none exists
st.error(
"No previous translations found. Starting with an empty translation history."
)
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What is up?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
response = st.write_stream(response_generator(prompt))
st.session_state.messages.append({"role": "assistant", "content": response})
with st.chat_message("assistant"):
message = st.write_stream(translation_generator())
st.session_state.messages.append({"role": "assistant", "content": message})
# Add assistant response to chat history