Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import json | |
import os | |
from pydantic import BaseModel, Field | |
from typing import List, Set, Dict, Any, Optional # Already have these, but commented for brevity if not all used | |
import time # Added for potential small delays if needed | |
from langchain_openai import ChatOpenAI | |
from langchain_core.messages import HumanMessage # Not directly used in provided snippet | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.output_parsers import StrOutputParser # Not directly used in provided snippet | |
from langchain_core.prompts import PromptTemplate # Not directly used in provided snippet | |
import gspread | |
import tempfile | |
from google.oauth2 import service_account | |
import tiktoken | |
st.set_page_config( | |
page_title="Candidate Matching App", | |
page_icon="π¨βπ»π―", | |
layout="wide" | |
) | |
os.environ["STREAMLIT_HOME"] = tempfile.gettempdir() | |
os.environ["STREAMLIT_DISABLE_TELEMETRY"] = "1" | |
# Define pydantic model for structured output | |
class Shortlist(BaseModel): | |
fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements upto 3 decimal points.") | |
candidate_name: str = Field(description="The name of the candidate.") | |
candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.") | |
candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.") | |
candidate_location: str = Field(description="The location of the candidate.") | |
justification: str = Field(description="Justification for the shortlisted candidate with the fit score") | |
# Function to calculate tokens | |
def calculate_tokens(text, model="gpt-4o-mini"): | |
try: | |
if "gpt-4" in model: | |
encoding = tiktoken.encoding_for_model("gpt-4o-mini") | |
elif "gpt-3.5" in model: | |
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") | |
else: | |
encoding = tiktoken.get_encoding("cl100k_base") | |
return len(encoding.encode(text)) | |
except Exception as e: | |
return len(text) // 4 | |
# Function to display token usage | |
def display_token_usage(): | |
if 'total_input_tokens' not in st.session_state: | |
st.session_state.total_input_tokens = 0 | |
if 'total_output_tokens' not in st.session_state: | |
st.session_state.total_output_tokens = 0 | |
total_input = st.session_state.total_input_tokens | |
total_output = st.session_state.total_output_tokens | |
total_tokens = total_input + total_output | |
model_to_check = st.session_state.get('model_name', "gpt-4o-mini") # Use a default if not set | |
if model_to_check == "gpt-4o-mini": | |
input_cost_per_1k = 0.00015 # Adjusted to example rates ($0.15 / 1M tokens) | |
output_cost_per_1k = 0.0006 # Adjusted to example rates ($0.60 / 1M tokens) | |
elif "gpt-4" in model_to_check: # Fallback for other gpt-4 | |
input_cost_per_1k = 0.005 | |
output_cost_per_1k = 0.015 # General gpt-4 pricing can vary | |
else: # Assume gpt-3.5-turbo pricing | |
input_cost_per_1k = 0.0005 # $0.0005 per 1K input tokens | |
output_cost_per_1k = 0.0015 # $0.0015 per 1K output tokens | |
estimated_cost = (total_input / 1000 * input_cost_per_1k) + (total_output / 1000 * output_cost_per_1k) | |
st.subheader("π Token Usage Statistics (for last processed job)") | |
col1, col2, col3 = st.columns(3) | |
with col1: st.metric("Input Tokens", f"{total_input:,}") | |
with col2: st.metric("Output Tokens", f"{total_output:,}") | |
with col3: st.metric("Total Tokens", f"{total_tokens:,}") | |
st.markdown(f"**Estimated Cost:** ${estimated_cost:.4f}") | |
return total_tokens | |
# Function to parse and normalize tech stacks | |
def parse_tech_stack(stack): | |
if pd.isna(stack) or stack == "" or stack is None: return set() | |
if isinstance(stack, set): return stack | |
try: | |
if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"): | |
items = stack.strip("{}").split(",") | |
return set(item.strip().strip("'\"") for item in items if item.strip()) | |
return set(map(lambda x: x.strip().lower(), str(stack).split(','))) | |
except Exception as e: | |
st.error(f"Error parsing tech stack: {e}") | |
return set() | |
def display_tech_stack(stack_set): | |
return ", ".join(sorted(list(stack_set))) if isinstance(stack_set, set) else str(stack_set) | |
def get_matching_candidates(job_stack, candidates_df): | |
matched = [] | |
job_stack_set = parse_tech_stack(job_stack) | |
for _, candidate in candidates_df.iterrows(): | |
candidate_stack = parse_tech_stack(candidate['Key Tech Stack']) | |
common = job_stack_set & candidate_stack | |
if len(common) >= 2: # Original condition | |
matched.append({ | |
"Name": candidate["Full Name"], "URL": candidate["LinkedIn URL"], | |
"Degree & Education": candidate["Degree & University"], | |
"Years of Experience": candidate["Years of Experience"], | |
"Current Title & Company": candidate['Current Title & Company'], | |
"Key Highlights": candidate["Key Highlights"], | |
"Location": candidate["Location (from most recent experience)"], | |
"Experience": str(candidate["Experience"]), "Tech Stack": candidate_stack | |
}) | |
return matched | |
def setup_llm(): | |
"""Set up the LangChain LLM with structured output""" | |
# Define the model to use | |
model_name = "gpt-4o-mini" | |
# Store model name in session state for token calculation | |
if 'model_name' not in st.session_state: | |
st.session_state.model_name = model_name | |
# Create LLM instance | |
llm = ChatOpenAI( | |
model=model_name, | |
temperature=0.3, | |
max_tokens=None, | |
timeout=None, | |
max_retries=2, | |
) | |
# Create structured output | |
sum_llm = llm.with_structured_output(Shortlist) | |
# Create system prompt | |
system = """You are an expert Tech Recruitor, your task is to analyse the Candidate profile and determine if it matches with the job details and provide a score(out of 10) indicating how compatible the | |
the profile is according to job. | |
First of all check the location of the candidate, if the location is not in the range of the job location then reject the candidate directly without any further analysis. | |
for example if the job location is New York and the candidate is in San Francisco then reject the candidate. Similarly for other states as well. | |
Try to ensure following points while estimating the candidate's fit score: | |
For education: | |
Tier1 - MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, University of Washington, Columbia, University of Chicago, Cornell, University of Michigan (Ann Arbor), UT Austin - Maximum points | |
Tier2 - UC Davis, Georgia Tech, Purdue, UMass Amherst,etc - Moderate points | |
Tier3 - Unknown or unranked institutions - Lower points or reject | |
Startup Experience Requirement: | |
Candidates must have worked as a direct employee at a VC-backed startup (Seed to series C/D) | |
preferred - Y Combinator, Sequoia,a16z,Accel,Founders Fund,LightSpeed,Greylock,Benchmark,Index Ventures,etc. | |
The fit score signifies based on following metrics: | |
1β5 - Poor Fit - Auto-reject | |
6β7 - Weak Fit - Auto-reject | |
8.0β8.7 - Moderate Fit - Auto-reject | |
8.8β10 - STRONG Fit - Include in results | |
Each candidate's fit score should be calculated based on a weighted evaluation of their background and must be distinct even if candidates have similar profiles. | |
""" | |
# Create query prompt | |
query_prompt = ChatPromptTemplate.from_messages([ | |
("system", system), | |
("human", """ | |
You are an expert Recruitor. Your task is to determine if the candidate matches the given job. | |
Provide the score as a `float` rounded to exactly **three decimal places** (e.g., 8.943, 9.211, etc.). | |
Avoid rounding to whole or one-decimal numbers. Every candidate should have a **unique** fit score. | |
For this you will be provided with the follwing inputs of job and candidates: | |
Job Details | |
Company: {Company} | |
Role: {Role} | |
About Company: {desc} | |
Locations: {Locations} | |
Tech Stack: {Tech_Stack} | |
Industry: {Industry} | |
Candidate Details: | |
Full Name: {Full_Name} | |
LinkedIn URL: {LinkedIn_URL} | |
Current Title & Company: {Current_Title_Company} | |
Years of Experience: {Years_of_Experience} | |
Degree & University: {Degree_University} | |
Key Tech Stack: {Key_Tech_Stack} | |
Key Highlights: {Key_Highlights} | |
Location (from most recent experience): {cand_Location} | |
Past_Experience: {Experience} | |
Answer in the structured manner as per the schema. | |
If any parameter is Unknown try not to include in the summary, only include those parameters which are known. | |
The `fit_score` must be a float with **exactly three decimal digits** (e.g. 8.812, 9.006). Do not round to 1 or 2 decimals. | |
"""), | |
]) | |
# Chain the prompt and LLM | |
cat_class = query_prompt | sum_llm | |
return cat_class | |
def call_llm(candidate_data, job_data, llm_chain): | |
try: | |
job_tech_stack = ", ".join(sorted(list(job_data.get("Tech_Stack", set())))) if isinstance(job_data.get("Tech_Stack"), set) else job_data.get("Tech_Stack", "") | |
candidate_tech_stack = ", ".join(sorted(list(candidate_data.get("Tech Stack", set())))) if isinstance(candidate_data.get("Tech Stack"), set) else candidate_data.get("Tech Stack", "") | |
payload = { | |
"Company": job_data.get("Company", ""), "Role": job_data.get("Role", ""), | |
"desc": job_data.get("desc", ""), "Locations": job_data.get("Locations", ""), | |
"Tech_Stack": job_tech_stack, "Industry": job_data.get("Industry", ""), | |
"Full_Name": candidate_data.get("Name", ""), "LinkedIn_URL": candidate_data.get("URL", ""), | |
"Current_Title_Company": candidate_data.get("Current Title & Company", ""), | |
"Years_of_Experience": candidate_data.get("Years of Experience", ""), | |
"Degree_University": candidate_data.get("Degree & Education", ""), | |
"Key_Tech_Stack": candidate_tech_stack, "Key_Highlights": candidate_data.get("Key Highlights", ""), | |
"cand_Location": candidate_data.get("Location", ""), "Experience": candidate_data.get("Experience", "") | |
} | |
payload_str = json.dumps(payload) | |
input_tokens = calculate_tokens(payload_str, st.session_state.model_name) | |
response = llm_chain.invoke(payload) | |
# print(candidate_data.get("Experience", "")) # Kept for your debugging if needed | |
response_str = f"candidate_name: {response.candidate_name} ... fit_score: {float(f'{response.fit_score:.3f}')} ..." # Truncated | |
output_tokens = calculate_tokens(response_str, st.session_state.model_name) | |
if 'total_input_tokens' not in st.session_state: st.session_state.total_input_tokens = 0 | |
if 'total_output_tokens' not in st.session_state: st.session_state.total_output_tokens = 0 | |
st.session_state.total_input_tokens += input_tokens | |
st.session_state.total_output_tokens += output_tokens | |
return { | |
"candidate_name": response.candidate_name, "candidate_url": response.candidate_url, | |
"candidate_summary": response.candidate_summary, "candidate_location": response.candidate_location, | |
"fit_score": response.fit_score, "justification": response.justification | |
} | |
except Exception as e: | |
st.error(f"Error calling LLM for {candidate_data.get('Name', 'Unknown')}: {e}") | |
return { | |
"candidate_name": candidate_data.get("Name", "Unknown"), "candidate_url": candidate_data.get("URL", ""), | |
"candidate_summary": "Error processing candidate profile", "candidate_location": candidate_data.get("Location", "Unknown"), | |
"fit_score": 0.0, "justification": f"Error in LLM processing: {str(e)}" | |
} | |
def process_candidates_for_job(job_row, candidates_df, llm_chain=None): | |
st.session_state.total_input_tokens = 0 # Reset for this job | |
st.session_state.total_output_tokens = 0 | |
if llm_chain is None: | |
with st.spinner("Setting up LLM..."): llm_chain = setup_llm() | |
selected_candidates = [] | |
job_data = { | |
"Company": job_row["Company"], "Role": job_row["Role"], "desc": job_row.get("One liner", ""), | |
"Locations": job_row.get("Locations", ""), "Tech_Stack": job_row["Tech Stack"], "Industry": job_row.get("Industry", "") | |
} | |
with st.spinner("Sourcing candidates based on tech stack..."): | |
matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df) | |
if not matching_candidates: | |
st.warning("No candidates with matching tech stack found for this job.") | |
return [] | |
st.success(f"Found {len(matching_candidates)} candidates with matching tech stack. Evaluating with LLM...") | |
candidates_progress = st.progress(0) | |
candidate_status = st.empty() # For live updates | |
for i, candidate_data in enumerate(matching_candidates): | |
# *** MODIFICATION: Check for stop flag *** | |
if st.session_state.get('stop_processing_flag', False): | |
candidate_status.warning("Processing stopped by user.") | |
time.sleep(1) # Allow message to be seen | |
break | |
candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}") | |
response = call_llm(candidate_data, job_data, llm_chain) | |
response_dict = { | |
"Name": response["candidate_name"], "LinkedIn": response["candidate_url"], | |
"summary": response["candidate_summary"], "Location": response["candidate_location"], | |
"Fit Score": float(f"{response['fit_score']:.3f}"), "justification": response["justification"], | |
"Educational Background": candidate_data.get("Degree & Education", ""), | |
"Years of Experience": candidate_data.get("Years of Experience", ""), | |
"Current Title & Company": candidate_data.get("Current Title & Company", "") | |
} | |
# *** MODIFICATION: Live output of candidate dicts - will disappear on rerun after processing *** | |
if response["fit_score"] >= 8.800: | |
selected_candidates.append(response_dict) | |
# This st.markdown will be visible during processing and cleared on the next full script rerun | |
# after this processing block finishes or is stopped. | |
st.markdown( | |
f"**Selected Candidate:** [{response_dict['Name']}]({response_dict['LinkedIn']}) " | |
f"(Score: {response_dict['Fit Score']:.3f}, Location: {response_dict['Location']})" | |
) | |
else: | |
# This st.write will also be visible during processing and cleared later. | |
st.write(f"Rejected candidate: {response_dict['Name']} with score: {response_dict['Fit Score']:.3f}, Location: {response_dict['Location']})") | |
candidates_progress.progress((i + 1) / len(matching_candidates)) | |
candidates_progress.empty() | |
candidate_status.empty() | |
if not st.session_state.get('stop_processing_flag', False): # Only show if not stopped | |
if selected_candidates: | |
st.success(f"β LLM evaluation complete. Found {len(selected_candidates)} suitable candidates for this job!") | |
else: | |
st.info("LLM evaluation complete. No candidates met the minimum fit score threshold for this job.") | |
return selected_candidates | |
def main(): | |
st.title("π¨βπ» Candidate Matching App") | |
if 'processed_jobs' not in st.session_state: st.session_state.processed_jobs = {} # May not be used with new logic | |
if 'Selected_Candidates' not in st.session_state: st.session_state.Selected_Candidates = {} | |
if 'llm_chain' not in st.session_state: st.session_state.llm_chain = None # Initialize to None | |
# *** MODIFICATION: Initialize stop flag *** | |
if 'stop_processing_flag' not in st.session_state: st.session_state.stop_processing_flag = False | |
st.write("This app matches job listings with candidate profiles...") | |
with st.sidebar: | |
st.header("API Configuration") | |
api_key = st.text_input("Enter OpenAI API Key", type="password", key="api_key_input") | |
if api_key: | |
os.environ["OPENAI_API_KEY"] = api_key | |
# Initialize LLM chain once API key is set | |
if st.session_state.llm_chain is None: | |
with st.spinner("Setting up LLM..."): | |
st.session_state.llm_chain = setup_llm() | |
st.success("API Key set") | |
else: | |
st.warning("Please enter OpenAI API Key to use LLM features") | |
st.session_state.llm_chain = None # Clear chain if key removed | |
# ... (rest of your gspread setup) ... | |
try: | |
SERVICE_ACCOUNT_FILE = 'src/synapse-recruitment-e94255ca76fd.json' # Ensure this path is correct | |
SCOPES = ['https://www.googleapis.com/auth/spreadsheets'] | |
creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES) | |
gc = gspread.authorize(creds) | |
job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k') | |
candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4') | |
except Exception as e: | |
st.error(f"Failed to connect to Google Sheets. Ensure '{SERVICE_ACCOUNT_FILE}' is valid and has permissions. Error: {e}") | |
st.stop() | |
if not os.environ.get("OPENAI_API_KEY"): | |
st.warning("β οΈ You need to provide an OpenAI API key in the sidebar to use this app.") | |
st.stop() | |
if st.session_state.llm_chain is None and os.environ.get("OPENAI_API_KEY"): | |
with st.spinner("Setting up LLM..."): | |
st.session_state.llm_chain = setup_llm() | |
st.rerun() # Rerun to ensure LLM is ready for the main display logic | |
try: | |
job_worksheet = job_sheet.worksheet('paraform_jobs_formatted') | |
job_data = job_worksheet.get_all_values() | |
candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated') | |
candidate_data = candidate_worksheet.get_all_values() | |
jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0]).drop(["Link"], axis=1, errors='ignore') | |
jobs_df1 = jobs_df[["Company","Role","One liner","Locations","Tech Stack","Workplace","Industry","YOE"]] | |
candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0]).fillna("Unknown") | |
candidates_df.drop_duplicates(subset=['LinkedIn URL'], keep='first', inplace=True) | |
with st.expander("Preview uploaded data"): | |
st.subheader("Jobs Data Preview"); st.dataframe(jobs_df1.head(3)) | |
# st.subheader("Candidates Data Preview"); st.dataframe(candidates_df.head(3)) | |
# Column mapping (simplified, ensure your CSVs have these exact names or adjust) | |
# candidates_df = candidates_df.rename(columns={...}) # Add if needed | |
display_job_selection(jobs_df, candidates_df, job_sheet) # job_sheet is 'sh' | |
except Exception as e: | |
st.error(f"Error processing files or data: {e}") | |
st.divider() | |
def display_job_selection(jobs_df, candidates_df, sh): # 'sh' is the Google Sheets client | |
st.subheader("Select a job to Source for potential matches") | |
job_options = [f"{row['Role']} at {row['Company']}" for _, row in jobs_df.iterrows()] | |
if not job_options: | |
st.warning("No jobs found to display.") | |
return | |
selected_job_index = st.selectbox("Jobs:", range(len(job_options)), format_func=lambda x: job_options[x], key="job_selectbox") | |
job_row = jobs_df.iloc[selected_job_index] | |
job_row_stack = parse_tech_stack(job_row["Tech Stack"]) # Assuming parse_tech_stack is defined | |
col_job_details_display, _ = st.columns([2,1]) | |
with col_job_details_display: | |
st.subheader(f"Job Details: {job_row['Role']}") | |
job_details_dict = { | |
"Company": job_row["Company"], "Role": job_row["Role"], "Description": job_row.get("One liner", "N/A"), | |
"Locations": job_row.get("Locations", "N/A"), "Industry": job_row.get("Industry", "N/A"), | |
"Tech Stack": display_tech_stack(job_row_stack) # Assuming display_tech_stack is defined | |
} | |
for key, value in job_details_dict.items(): st.markdown(f"**{key}:** {value}") | |
# State keys for the selected job | |
job_processed_key = f"job_{selected_job_index}_processed_successfully" | |
job_is_processing_key = f"job_{selected_job_index}_is_currently_processing" | |
# Initialize states if they don't exist for this job | |
if job_processed_key not in st.session_state: st.session_state[job_processed_key] = False | |
if job_is_processing_key not in st.session_state: st.session_state[job_is_processing_key] = False | |
sheet_name = f"{job_row['Role']} at {job_row['Company']}".strip()[:100] | |
worksheet_exists = False | |
existing_candidates_from_sheet = [] # This will store raw data from sheet | |
try: | |
cand_worksheet = sh.worksheet(sheet_name) | |
worksheet_exists = True | |
existing_data = cand_worksheet.get_all_values() # Get all values as list of lists | |
if len(existing_data) > 1: # Has data beyond header | |
existing_candidates_from_sheet = existing_data # Store raw data | |
except gspread.exceptions.WorksheetNotFound: | |
pass | |
# --- Processing Control Area --- | |
# Show controls if not successfully processed in this session OR if sheet exists (allow re-process/overwrite) | |
if not st.session_state.get(job_processed_key, False) or existing_candidates_from_sheet: | |
if existing_candidates_from_sheet and not st.session_state.get(job_is_processing_key, False) and not st.session_state.get(job_processed_key, False): | |
st.info(f"Processing ('{sheet_name}')") | |
col_find, col_stop = st.columns(2) | |
with col_find: | |
if st.button(f"Find Matching Candidates for this Job", key=f"find_btn_{selected_job_index}", disabled=st.session_state.get(job_is_processing_key, False)): | |
if not os.environ.get("OPENAI_API_KEY") or st.session_state.llm_chain is None: # Assuming llm_chain is in session_state | |
st.error("OpenAI API key not set or LLM not initialized. Please check sidebar.") | |
else: | |
st.session_state[job_is_processing_key] = True | |
st.session_state.stop_processing_flag = False # Reset for new run, assuming stop_processing_flag is used | |
st.session_state.Selected_Candidates[selected_job_index] = [] # Clear previous run for this job | |
st.session_state[job_processed_key] = False # Mark as not successfully processed yet for this attempt | |
st.rerun() | |
with col_stop: | |
if st.session_state.get(job_is_processing_key, False): # Show STOP only if "Find" was clicked and currently processing | |
if st.button("STOP Processing", key=f"stop_btn_{selected_job_index}"): | |
st.session_state.stop_processing_flag = True # Assuming stop_processing_flag is used | |
st.warning("Stop request sent. Processing will halt shortly.") | |
# --- Actual Processing Logic --- | |
if st.session_state.get(job_is_processing_key, False): | |
with st.spinner(f"Sourcing candidates for {job_row['Role']} at {job_row['Company']}..."): | |
# Assuming process_candidates_for_job is defined and handles stop_processing_flag | |
processed_candidates_list = process_candidates_for_job( | |
job_row, candidates_df, st.session_state.llm_chain # Assuming llm_chain from session_state | |
) | |
st.session_state[job_is_processing_key] = False # Mark as no longer actively processing | |
if not st.session_state.get('stop_processing_flag', False): # If processing was NOT stopped | |
if processed_candidates_list: | |
# Ensure Fit Score is float for reliable sorting | |
for cand in processed_candidates_list: | |
if 'Fit Score' in cand and isinstance(cand['Fit Score'], str): | |
try: cand['Fit Score'] = float(cand['Fit Score']) | |
except ValueError: cand['Fit Score'] = 0.0 # Default if conversion fails | |
elif 'Fit Score' not in cand: | |
cand['Fit Score'] = 0.0 | |
processed_candidates_list.sort(key=lambda x: x.get("Fit Score", 0.0), reverse=True) | |
st.session_state.Selected_Candidates[selected_job_index] = processed_candidates_list | |
st.session_state[job_processed_key] = True # Mark as successfully processed | |
# Save to Google Sheet | |
try: | |
target_worksheet = None | |
if not worksheet_exists: | |
target_worksheet = sh.add_worksheet(title=sheet_name, rows=max(100, len(processed_candidates_list) + 10), cols=20) | |
else: | |
target_worksheet = sh.worksheet(sheet_name) | |
headers = list(processed_candidates_list[0].keys()) | |
# Ensure all values are converted to strings for gspread | |
rows_to_write = [headers] + [[str(candidate.get(h, "")) for h in headers] for candidate in processed_candidates_list] | |
target_worksheet.clear() | |
target_worksheet.update('A1', rows_to_write) | |
st.success(f"Results saved to Google Sheet: '{sheet_name}'") | |
except Exception as e: | |
st.error(f"Error writing to Google Sheet '{sheet_name}': {e}") | |
else: | |
st.info("No suitable candidates found after processing.") | |
st.session_state.Selected_Candidates[selected_job_index] = [] | |
st.session_state[job_processed_key] = True # Mark as processed, even if no results | |
else: # If processing WAS stopped | |
st.info("Processing was stopped by user. Results (if any) were not saved. You can try processing again.") | |
st.session_state.Selected_Candidates[selected_job_index] = [] # Clear any partial results | |
st.session_state[job_processed_key] = False # Not successfully processed | |
st.session_state.pop('stop_processing_flag', None) # Clean up flag | |
st.rerun() # Rerun to update UI based on new state | |
# --- Display Results Area --- | |
should_display_results_area = False | |
final_candidates_to_display = [] # Initialize to ensure it's always defined | |
if st.session_state.get(job_is_processing_key, False): | |
should_display_results_area = False # Not if actively processing | |
elif st.session_state.get(job_processed_key, False): # If successfully processed in this session | |
should_display_results_area = True | |
final_candidates_to_display = st.session_state.Selected_Candidates.get(selected_job_index, []) | |
elif existing_candidates_from_sheet: # If not processed in this session, but sheet has data | |
should_display_results_area = True | |
headers = existing_candidates_from_sheet[0] | |
parsed_sheet_candidates = [] | |
for row_idx, row_data in enumerate(existing_candidates_from_sheet[1:]): # Skip header row | |
candidate_dict = {} | |
for col_idx, header_name in enumerate(headers): | |
candidate_dict[header_name] = row_data[col_idx] if col_idx < len(row_data) else None | |
# Convert Fit Score from string to float for consistent handling | |
if 'Fit Score' in candidate_dict and isinstance(candidate_dict['Fit Score'], str): | |
try: | |
candidate_dict['Fit Score'] = float(candidate_dict['Fit Score']) | |
except ValueError: | |
st.warning(f"Could not convert Fit Score '{candidate_dict['Fit Score']}' to float for candidate in sheet row {row_idx+2}.") | |
candidate_dict['Fit Score'] = 0.0 # Default if conversion fails | |
elif 'Fit Score' not in candidate_dict: | |
candidate_dict['Fit Score'] = 0.0 | |
parsed_sheet_candidates.append(candidate_dict) | |
final_candidates_to_display = sorted(parsed_sheet_candidates, key=lambda x: x.get("Fit Score", 0.0), reverse=True) | |
if not st.session_state.get(job_processed_key, False): # Inform if loading from sheet and not explicitly processed | |
st.info(f"Displaying: '{sheet_name}'.") | |
if should_display_results_area: | |
st.subheader("Selected Candidates") | |
# Display token usage if it was just processed (job_processed_key is True and tokens exist) | |
if st.session_state.get(job_processed_key, False) and \ | |
(st.session_state.get('total_input_tokens', 0) > 0 or st.session_state.get('total_output_tokens', 0) > 0): | |
display_token_usage() # Assuming display_token_usage is defined | |
if final_candidates_to_display: | |
for i, candidate in enumerate(final_candidates_to_display): | |
score_display = candidate.get('Fit Score', 'N/A') | |
if isinstance(score_display, (float, int)): | |
score_display = f"{score_display:.3f}" | |
# If score_display is still a string (e.g. 'N/A' or failed float conversion), it will be displayed as is. | |
expander_title = f"{i+1}. {candidate.get('Name', 'N/A')} (Score: {score_display})" | |
with st.expander(expander_title): | |
text_to_copy = f"""Candidate: {candidate.get('Name', 'N/A')} (Score: {score_display}) | |
Summary: {candidate.get('summary', 'N/A')} | |
Current: {candidate.get('Current Title & Company', 'N/A')} | |
Education: {candidate.get('Educational Background', 'N/A')} | |
Experience: {candidate.get('Years of Experience', 'N/A')} | |
Location: {candidate.get('Location', 'N/A')} | |
LinkedIn: {candidate.get('LinkedIn', 'N/A')} | |
Justification: {candidate.get('justification', 'N/A')} | |
""" | |
js_text_to_copy = json.dumps(text_to_copy) | |
button_unique_id = f"copy_btn_job{selected_job_index}_cand{i}" | |
copy_button_html = f""" | |
<script> | |
function copyToClipboard_{button_unique_id}() {{ | |
const textToCopy = {js_text_to_copy}; | |
navigator.clipboard.writeText(textToCopy).then(function() {{ | |
const btn = document.getElementById('{button_unique_id}'); | |
if (btn) {{ // Check if button exists | |
const originalText = btn.innerText; | |
btn.innerText = 'Copied!'; | |
setTimeout(function() {{ btn.innerText = originalText; }}, 1500); | |
}} | |
}}, function(err) {{ | |
console.error('Could not copy text: ', err); | |
alert('Failed to copy text. Please use Ctrl+C or your browser\\'s copy function.'); | |
}}); | |
}} | |
</script> | |
<button id="{button_unique_id}" onclick="copyToClipboard_{button_unique_id}()">π Copy Details</button> | |
""" | |
expander_cols = st.columns([0.82, 0.18]) | |
with expander_cols[1]: | |
st.components.v1.html(copy_button_html, height=40) | |
with expander_cols[0]: | |
st.markdown(f"**Summary:** {candidate.get('summary', 'N/A')}") | |
st.markdown(f"**Current:** {candidate.get('Current Title & Company', 'N/A')}") | |
st.markdown(f"**Education:** {candidate.get('Educational Background', 'N/A')}") | |
st.markdown(f"**Experience:** {candidate.get('Years of Experience', 'N/A')}") | |
st.markdown(f"**Location:** {candidate.get('Location', 'N/A')}") | |
if 'LinkedIn' in candidate and candidate.get('LinkedIn'): | |
st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**") | |
else: | |
st.markdown("**LinkedIn Profile:** N/A") | |
if 'justification' in candidate and candidate.get('justification'): | |
st.markdown("**Justification:**") | |
st.info(candidate['justification']) | |
elif st.session_state.get(job_processed_key, False): # Processed but no candidates | |
st.info("No candidates met the criteria for this job after processing.") | |
# This "Reset" button is now governed by should_display_results_area | |
if st.button("Reset and Process Again", key=f"reset_btn_{selected_job_index}"): | |
st.session_state[job_processed_key] = False | |
st.session_state.pop(job_is_processing_key, None) | |
if selected_job_index in st.session_state.Selected_Candidates: | |
del st.session_state.Selected_Candidates[selected_job_index] | |
try: | |
sh.worksheet(sheet_name).clear() | |
st.info(f"Cleared Google Sheet '{sheet_name}' as part of reset.") | |
except: pass # Ignore if sheet not found or error | |
st.rerun() | |
if __name__ == "__main__": | |
main() | |