ajnx014's picture
Update app.py
57e5f84 verified
import gradio as gr
import os
import requests
from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
# βœ… Read OpenRouter API key from HF secret
OPENROUTER_API_KEY = os.environ.get("ArjunHF")
class OpenRouterChatModel(ChatOpenAI):
def __init__(self, **kwargs):
super().__init__(
openai_api_base="https://openrouter.ai/api/v1",
openai_api_key=OPENROUTER_API_KEY,
model_name="mistralai/mistral-small-3.2-24b-instruct:free", # mistralai/mistral-small-3.2-24b-instruct:free # deepseek/deepseek-r1-0528:free
**kwargs
)
def qa_on_url(url, question):
try:
loader = WebBaseLoader(url)
docs = loader.load()
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
split_docs = splitter.split_documents(docs)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectordb = FAISS.from_documents(split_docs, embeddings)
retriever = vectordb.as_retriever()
llm = OpenRouterChatModel(temperature=0.2)
qa_chain = RetrievalQA.from_chain_type(llm, retriever=retriever)
return qa_chain.run(question)
except Exception as e:
return f"❌ Error: {e}"
iface = gr.Interface(
fn=qa_on_url,
inputs=[gr.Textbox(label="Enter Web URL"), gr.Textbox(label="Your Question")],
outputs="text",
title="πŸ”Ž Ask Questions About Any Webpage (Mistral 3.2 via OpenRouter + LangChain)",
description="⚠️ This may take 10–20 seconds depending on the page length and LLM response time. Please be patient!"
)
if __name__ == "__main__":
iface.launch()