ajitrajasekharan
commited on
Commit
•
d1b63cc
1
Parent(s):
04d9f88
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,6 @@ import streamlit as st
|
|
3 |
import torch
|
4 |
import string
|
5 |
|
6 |
-
bert_tokenizer = None
|
7 |
-
bert_model = None
|
8 |
-
global top_k
|
9 |
-
model_name = "ajitrajaskharan/biomedical"
|
10 |
|
11 |
|
12 |
from transformers import BertTokenizer, BertForMaskedLM
|
@@ -75,14 +71,12 @@ def get_bert_prediction(input_text,top_k,model_name):
|
|
75 |
|
76 |
def run_test(sent,top_k,model_name):
|
77 |
start = None
|
78 |
-
|
79 |
-
|
80 |
-
if (bert_tokenizer is None):
|
81 |
-
bert_tokenizer, bert_model = load_bert_model(model_name)
|
82 |
with st.spinner("Computing"):
|
83 |
start = time.time()
|
84 |
try:
|
85 |
-
res = get_bert_prediction(sent,top_k,model_name)
|
86 |
st.caption("Results in JSON")
|
87 |
st.json(res)
|
88 |
|
@@ -93,47 +87,48 @@ def run_test(sent,top_k,model_name):
|
|
93 |
st.text(f"prediction took {time.time() - start:.2f}s")
|
94 |
|
95 |
def on_text_change():
|
96 |
-
|
97 |
text = st.session_state.my_text
|
98 |
-
run_test(text,top_k,model_name)
|
99 |
|
100 |
def on_option_change():
|
101 |
-
|
102 |
text = st.session_state.my_choice
|
103 |
-
run_test(text,top_k,model_name)
|
104 |
|
105 |
def on_results_count_change():
|
106 |
-
|
107 |
-
top_k = int(st.session_state.my_slider)
|
108 |
-
st.info("Results count changed " + str(top_k))
|
109 |
|
110 |
def on_model_change1():
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
model_name = st.session_state.my_model1
|
115 |
-
st.info("Pre-selected model chosen: " + model_name)
|
116 |
-
bert_tokenizer, bert_model = load_bert_model(model_name)
|
117 |
|
118 |
def on_model_change2():
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
model_name = st.session_state.my_model2
|
123 |
-
st.info("Custom model chosen: " + model_name)
|
124 |
-
bert_tokenizer, bert_model = load_bert_model(model_name)
|
125 |
|
126 |
def init_selectbox():
|
127 |
st.selectbox(
|
128 |
'Choose any of these sentences or type any text below',
|
129 |
('', "[MASK] who lives in New York and works for XCorp suffers from Parkinson's", "Lou Gehrig who lives in [MASK] and works for XCorp suffers from Parkinson's","Lou Gehrig who lives in New York and works for [MASK] suffers from Parkinson's","Lou Gehrig who lives in New York and works for XCorp suffers from [MASK]","[MASK] who lives in New York and works for XCorp suffers from Lou Gehrig's", "Parkinson who lives in [MASK] and works for XCorp suffers from Lou Gehrig's","Parkinson who lives in New York and works for [MASK] suffers from Lou Gehrig's","Parkinson who lives in New York and works for XCorp suffers from [MASK]","Lou Gehrig","Parkinson","Lou Gehrigh's is a [MASK]","Parkinson is a [MASK]","New York is a [MASK]","New York","XCorp","XCorp is a [MASK]","acute lymphoblastic leukemia","acute lymphoblastic leukemia is a [MASK]"),on_change=on_option_change,key='my_choice')
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
def main():
|
134 |
-
|
135 |
-
|
136 |
-
global bert_model
|
137 |
|
138 |
|
139 |
st.markdown("<h3 style='text-align: center;'>Qualitative evaluation of any pretrained BERT model</h3>", unsafe_allow_html=True)
|
@@ -144,8 +139,8 @@ def main():
|
|
144 |
st.write("This app can be used to examine both model prediction for a masked position as well as the neighborhood of CLS vector")
|
145 |
st.write(" - To examine model prediction for a position, enter the token [MASK] or <mask>")
|
146 |
st.write(" - To examine just the [CLS] vector, enter a word/phrase or sentence. Example: eGFR or EGFR or non small cell lung cancer")
|
147 |
-
|
148 |
-
|
149 |
|
150 |
|
151 |
|
@@ -153,13 +148,13 @@ def main():
|
|
153 |
|
154 |
# with st.spinner("Computing"):
|
155 |
try:
|
156 |
-
|
157 |
init_selectbox()
|
158 |
st.text_input("Enter text below", "",on_change=on_text_change,key='my_text')
|
159 |
-
|
160 |
-
if (len(custom_model_name) > 0):
|
161 |
-
|
162 |
-
|
163 |
# bert_tokenizer, bert_model = load_bert_model(model_name)
|
164 |
#if len(input_text) > 0:
|
165 |
# run_test(input_text,top_k,model_name)
|
@@ -167,10 +162,10 @@ def main():
|
|
167 |
# if len(option) > 0:
|
168 |
# run_test(option,top_k,model_name)
|
169 |
|
170 |
-
st.info("Top k = " + str(top_k))
|
171 |
-
st.info("Model name = " + model_name)
|
172 |
-
if (bert_tokenizer is None):
|
173 |
-
bert_tokenizer, bert_model = load_bert_model(model_name)
|
174 |
|
175 |
|
176 |
|
|
|
3 |
import torch
|
4 |
import string
|
5 |
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
from transformers import BertTokenizer, BertForMaskedLM
|
|
|
71 |
|
72 |
def run_test(sent,top_k,model_name):
|
73 |
start = None
|
74 |
+
if (st.session_state['bert_tokenizer'] is None):
|
75 |
+
st.session_state['bert_tokenizer'], st.session_state['bert_model'] = load_bert_model(st.session_state['model_name'])
|
|
|
|
|
76 |
with st.spinner("Computing"):
|
77 |
start = time.time()
|
78 |
try:
|
79 |
+
res = get_bert_prediction(sent,st.session_state['top_k'],st.session_state['model_name'])
|
80 |
st.caption("Results in JSON")
|
81 |
st.json(res)
|
82 |
|
|
|
87 |
st.text(f"prediction took {time.time() - start:.2f}s")
|
88 |
|
89 |
def on_text_change():
|
90 |
+
|
91 |
text = st.session_state.my_text
|
92 |
+
run_test(text,st.session_state['top_k']),st.session_state['model_name'])
|
93 |
|
94 |
def on_option_change():
|
95 |
+
|
96 |
text = st.session_state.my_choice
|
97 |
+
run_test(text,st.session_state['top_k']),st.session_state['model_name'])
|
98 |
|
99 |
def on_results_count_change():
|
100 |
+
|
101 |
+
st.session_state['top_k'] = int(st.session_state.my_slider)
|
102 |
+
st.info("Results count changed " + str(st.session_state['top_k']))
|
103 |
|
104 |
def on_model_change1():
|
105 |
+
st.session_state['model_name'] = st.session_state.my_model1
|
106 |
+
st.info("Pre-selected model chosen: " + st.session_state['model_name'])
|
107 |
+
st.session_state['bert_tokenizer'], st.session_state['bert_model'] = load_bert_model(st.session_state['model_name'])
|
|
|
|
|
|
|
108 |
|
109 |
def on_model_change2():
|
110 |
+
st.session_state['model_name'] = st.session_state.my_model2
|
111 |
+
st.info("Custom model chosen: " + st.session_state['model_name'])
|
112 |
+
st.session_state['bert_tokenizer'], st.session_state['bert_model'] = load_bert_model(st.session_state['model_name'])
|
|
|
|
|
|
|
113 |
|
114 |
def init_selectbox():
|
115 |
st.selectbox(
|
116 |
'Choose any of these sentences or type any text below',
|
117 |
('', "[MASK] who lives in New York and works for XCorp suffers from Parkinson's", "Lou Gehrig who lives in [MASK] and works for XCorp suffers from Parkinson's","Lou Gehrig who lives in New York and works for [MASK] suffers from Parkinson's","Lou Gehrig who lives in New York and works for XCorp suffers from [MASK]","[MASK] who lives in New York and works for XCorp suffers from Lou Gehrig's", "Parkinson who lives in [MASK] and works for XCorp suffers from Lou Gehrig's","Parkinson who lives in New York and works for [MASK] suffers from Lou Gehrig's","Parkinson who lives in New York and works for XCorp suffers from [MASK]","Lou Gehrig","Parkinson","Lou Gehrigh's is a [MASK]","Parkinson is a [MASK]","New York is a [MASK]","New York","XCorp","XCorp is a [MASK]","acute lymphoblastic leukemia","acute lymphoblastic leukemia is a [MASK]"),on_change=on_option_change,key='my_choice')
|
118 |
|
119 |
+
def init_session_states():
|
120 |
+
if 'top_k' not in st.session_state:
|
121 |
+
st.session_state['top_k'] = 20
|
122 |
+
if 'bert_tokenizer' not in st.session_state:
|
123 |
+
st.session_state['bert_tokenizer'] = None
|
124 |
+
if 'bert_model' not in st.session_state:
|
125 |
+
st.session_state['bert_model'] = None
|
126 |
+
if 'model_name' not in st.session_state:
|
127 |
+
st.session_state['model_name'] = "ajitrajasekharan/biomedical"
|
128 |
|
129 |
def main():
|
130 |
+
init_session_states()
|
131 |
+
|
|
|
132 |
|
133 |
|
134 |
st.markdown("<h3 style='text-align: center;'>Qualitative evaluation of any pretrained BERT model</h3>", unsafe_allow_html=True)
|
|
|
139 |
st.write("This app can be used to examine both model prediction for a masked position as well as the neighborhood of CLS vector")
|
140 |
st.write(" - To examine model prediction for a position, enter the token [MASK] or <mask>")
|
141 |
st.write(" - To examine just the [CLS] vector, enter a word/phrase or sentence. Example: eGFR or EGFR or non small cell lung cancer")
|
142 |
+
st.sidebar.slider("Select how many predictions do you need", 1 , 50, 20,key='my_slider',on_change=on_results_count_change) #some times it is possible to have less words
|
143 |
+
|
144 |
|
145 |
|
146 |
|
|
|
148 |
|
149 |
# with st.spinner("Computing"):
|
150 |
try:
|
151 |
+
st.sidebar.selectbox(label='Select Model to Apply', options=['ajitrajasekharan/biomedical', 'bert-base-cased','bert-large-cased','microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext','allenai/scibert_scivocab_cased','dmis-lab/biobert-v1.1'], index=0, key = "my_model1",on_change=on_model_change1)
|
152 |
init_selectbox()
|
153 |
st.text_input("Enter text below", "",on_change=on_text_change,key='my_text')
|
154 |
+
st.text_input("Model not listed on left? Type the model name (fill-mask BERT models only)", "",key="my_model2",on_change=on_model_change2)
|
155 |
+
#if (len(custom_model_name) > 0):
|
156 |
+
# model_name = custom_model_name
|
157 |
+
# st.info("Custom model selected: " + model_name)
|
158 |
# bert_tokenizer, bert_model = load_bert_model(model_name)
|
159 |
#if len(input_text) > 0:
|
160 |
# run_test(input_text,top_k,model_name)
|
|
|
162 |
# if len(option) > 0:
|
163 |
# run_test(option,top_k,model_name)
|
164 |
|
165 |
+
st.info("Top k = " + str(st.session_state['top_k']))
|
166 |
+
st.info("Model name = " + st.session_state['model_name'])
|
167 |
+
if (st.session_state['bert_tokenizer'] is None):
|
168 |
+
st.session_state['bert_tokenizer'], st.session_state['bert_model'] = load_bert_model(st.session_state['model_name'])
|
169 |
|
170 |
|
171 |
|