|
import time |
|
import streamlit as st |
|
import torch |
|
import string |
|
|
|
|
|
|
|
from transformers import BertTokenizer, BertForMaskedLM |
|
|
|
st.set_page_config(page_title='Compare pretrained BERT models qualitatively', page_icon=None, layout='centered', initial_sidebar_state='auto') |
|
|
|
@st.cache() |
|
def load_bert_model(model_name): |
|
try: |
|
bert_tokenizer = BertTokenizer.from_pretrained(model_name,do_lower_case |
|
=False) |
|
bert_model = BertForMaskedLM.from_pretrained(model_name).eval() |
|
return bert_tokenizer,bert_model |
|
except Exception as e: |
|
pass |
|
|
|
|
|
|
|
|
|
def decode(tokenizer, pred_idx, top_clean): |
|
ignore_tokens = string.punctuation |
|
tokens = [] |
|
for w in pred_idx: |
|
token = ''.join(tokenizer.decode(w).split()) |
|
if token not in ignore_tokens and len(token) > 1 and not token.startswith('.') and not token.startswith('['): |
|
|
|
tokens.append(token) |
|
return '\n'.join(tokens[:top_clean]) |
|
|
|
def encode(tokenizer, text_sentence, add_special_tokens=True): |
|
|
|
text_sentence = text_sentence.replace('<mask>', tokenizer.mask_token) |
|
|
|
tokenized_text = tokenizer.tokenize(text_sentence) |
|
input_ids = torch.tensor([tokenizer.encode(text_sentence, add_special_tokens=add_special_tokens)]) |
|
if (tokenizer.mask_token in text_sentence.split()): |
|
mask_idx = torch.where(input_ids == tokenizer.mask_token_id)[1].tolist()[0] |
|
else: |
|
mask_idx = 0 |
|
return input_ids, mask_idx,tokenized_text |
|
|
|
def get_all_predictions(text_sentence, model_name,top_clean=5): |
|
bert_tokenizer = st.session_state['bert_tokenizer'] |
|
bert_model = st.session_state['bert_model'] |
|
top_k = st.session_state['top_k'] |
|
|
|
|
|
input_ids, mask_idx,tokenized_text = encode(bert_tokenizer, text_sentence) |
|
|
|
with torch.no_grad(): |
|
predict = bert_model(input_ids)[0] |
|
bert = decode(bert_tokenizer, predict[0, mask_idx, :].topk(top_k*2).indices.tolist(), top_clean) |
|
cls = decode(bert_tokenizer, predict[0, 0, :].topk(top_k*2).indices.tolist(), top_clean) |
|
|
|
if ("[MASK]" in text_sentence or "<mask>" in text_sentence): |
|
return {'Input sentence':text_sentence,'Tokenized text': tokenized_text, 'results_count':top_k,'Model':model_name,'Masked position': bert,'[CLS]':cls} |
|
else: |
|
return {'Input sentence':text_sentence,'Tokenized text': tokenized_text,'results_count':top_k,'Model':model_name,'[CLS]':cls} |
|
|
|
def get_bert_prediction(input_text,top_k,model_name): |
|
try: |
|
|
|
res = get_all_predictions(input_text,model_name, top_clean=int(top_k)) |
|
return res |
|
except Exception as error: |
|
pass |
|
|
|
|
|
def run_test(sent,top_k,model_name,display_area): |
|
if (st.session_state['bert_tokenizer'] is None): |
|
display_area.text("Loading model:" + st.session_state['model_name']) |
|
st.session_state['bert_tokenizer'], st.session_state['bert_model'] = load_bert_model(st.session_state['model_name']) |
|
display_area.text("Model " + str(st.session_state['model_name']) + " load complete") |
|
try: |
|
display_area.text("Computing fill-mask prediction...") |
|
res = get_bert_prediction(sent,st.session_state['top_k'],st.session_state['model_name']) |
|
display_area.text("Fill-mask prediction complete") |
|
return res |
|
|
|
except Exception as e: |
|
st.error("Some error occurred during prediction" + str(e)) |
|
st.stop() |
|
return {} |
|
|
|
def on_text_change(text,display_area): |
|
return run_test(text,st.session_state['top_k'],st.session_state['model_name'],display_area) |
|
|
|
|
|
|
|
|
|
def on_model_change(model_name): |
|
if (model_name != st.session_state['model_name']): |
|
st.session_state['model_name'] = model_name |
|
st.session_state['bert_tokenizer'], st.session_state['bert_model'] = load_bert_model(st.session_state['model_name']) |
|
|
|
def init_selectbox(): |
|
return st.selectbox( |
|
'Choose any of the sentences in pull-down below', |
|
("[MASK] who lives in New York and works for XCorp suffers from Parkinson's", "Lou Gehrig who lives in [MASK] and works for XCorp suffers from Parkinson's","Lou Gehrig who lives in New York and works for [MASK] suffers from Parkinson's","Lou Gehrig who lives in New York and works for XCorp suffers from [MASK]","[MASK] who lives in New York and works for XCorp suffers from Lou Gehrig's", "Parkinson who lives in [MASK] and works for XCorp suffers from Lou Gehrig's","Parkinson who lives in New York and works for [MASK] suffers from Lou Gehrig's","Parkinson who lives in New York and works for XCorp suffers from [MASK]","Lou Gehrig","Parkinson","Lou Gehrigh's is a [MASK]","Parkinson is a [MASK]","New York is a [MASK]","New York","XCorp","XCorp is a [MASK]","acute lymphoblastic leukemia","acute lymphoblastic leukemia is a [MASK]","eGFR is a [MASK]","EGFR is a [MASK]","Trileptal is a [MASK]","no bond or se curity of any kind will be required of any [MASK] of this will","habeas corpus is a [MASK]","modus operandi is a [MASK]","the volunteers were instructed to buy specific systems using our usual [MASK] —anonymously and with cash"),key='my_choice') |
|
|
|
def init_session_states(): |
|
if 'top_k' not in st.session_state: |
|
st.session_state['top_k'] = 20 |
|
if 'bert_tokenizer' not in st.session_state: |
|
st.session_state['bert_tokenizer'] = None |
|
if 'bert_model' not in st.session_state: |
|
st.session_state['bert_model'] = None |
|
if 'model_name' not in st.session_state: |
|
st.session_state['model_name'] = "ajitrajasekharan/biomedical" |
|
|
|
def main(): |
|
init_session_states() |
|
|
|
|
|
|
|
st.markdown("<h3 style='text-align: center;'>Compare pretrained BERT models qualitatively</h3>", unsafe_allow_html=True) |
|
st.markdown(""" |
|
<small style="font-size:20px; color: #2f2f2f"><br/>Why compare pretrained models <b>before fine-tuning</b>?</small><br/><small style="font-size:16px; color: #7f7f7f">Pretrained BERT models can be used as is, <a href="https://huggingface.co/spaces/ajitrajasekharan/self-supervised-ner-biomedical" target='_blank'><b>with no fine tuning to perform tasks like NER.</b><br/></a>This can be done ideally by using both fill-mask and CLS predictions, or just using fill-mask predictions if CLS predictions are poor</small> |
|
""", unsafe_allow_html=True) |
|
|
|
st.write("This app can be used to examine both fill-mask predictions as well as the neighborhood of CLS vector") |
|
st.write(" - To examine fill-mask predictions, enter the token [MASK] or <mask> in a sentence") |
|
st.write(" - To examine just the [CLS] vector, enter a word/phrase or sentence. Example: eGFR or EGFR or non small cell lung cancer") |
|
st.write("Pretrained BERT models from three domains (biomedical,PHI [person,location,org, etc.], and legal) are listed below. Their performance on domain specific sentences reveal both their strength and weakness.") |
|
|
|
|
|
|
|
try: |
|
|
|
|
|
with st.form('my_form'): |
|
selected_sentence = init_selectbox() |
|
text_input = st.text_input("Type any sentence below", "",key='my_text') |
|
selected_model = st.selectbox(label='Select Model to Apply', options=['ajitrajasekharan/biomedical', 'bert-base-cased','bert-large-cased','microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext','allenai/scibert_scivocab_cased','dmis-lab/biobert-v1.1','nlpaueb/legal-bert-base-uncased'], index=0, key = "my_model1") |
|
custom_model_selection = st.text_input("Model not listed on above? Type the model name (**fill-mask BERT models only**)", "",key="my_model2") |
|
results_count = st.slider("Select count of predictions to display", 1 , 50, 20,key='my_slider') |
|
submit_button = st.form_submit_button('Submit') |
|
|
|
input_status_area = st.empty() |
|
display_area = st.empty() |
|
if submit_button: |
|
start = time.time() |
|
if (len(text_input) == 0): |
|
text_input = selected_sentence |
|
st.session_state['top_k'] = results_count |
|
if (len(custom_model_selection) != 0): |
|
on_model_change(custom_model_selection) |
|
else: |
|
on_model_change(selected_model) |
|
|
|
input_status_area.text("Input sentence: " + text_input) |
|
results = on_text_change(text_input,display_area) |
|
display_area.empty() |
|
with display_area.container(): |
|
st.text(f"prediction took {time.time() - start:.2f}s") |
|
st.json(results) |
|
|
|
|
|
|
|
except Exception as e: |
|
st.error("Some error occurred during loading" + str(e)) |
|
st.stop() |
|
|
|
|
|
st.markdown(""" |
|
<h3 style="font-size:16px; color: #7f7f7f; text-align: center">Link to post <a href='https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html' target='_blank'>describing this approach </a></h3> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|