Spaces:
Sleeping
Sleeping
from sklearn.model_selection import train_test_split | |
import pandas as pd | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing import sequence | |
from BackPropogation import BackPropogation | |
import pickle | |
dataset = pd.read_csv(r"C:\Users\Ajitha V\OneDrive\Desktop\Neural_network\IMDB Dataset.csv") | |
dataset['sentiment'] = dataset['sentiment'].map( {'negative': 1, 'positive': 0} ) | |
X = dataset['review'].values | |
y = dataset['sentiment'].values | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=42) | |
tokeniser = tf.keras.preprocessing.text.Tokenizer() | |
tokeniser.fit_on_texts(X_train) | |
X_train = tokeniser.texts_to_sequences(X_train) | |
X_test = tokeniser.texts_to_sequences(X_test) | |
max_review_length = 500 | |
X_train = sequence.pad_sequences(X_train, maxlen=max_review_length) | |
X_test = sequence.pad_sequences(X_test, maxlen=max_review_length) | |
backprop = BackPropogation(learning_rate=0.01, epochs=5, activation_function='sigmoid') | |
backprop.fit(X_train, y_train) | |
pred = backprop.predict(X_test) | |
with open("bp_model.pkl",'wb') as file: | |
pickle.dump(backprop, file) | |
with open("bp_tokeniser.pkl",'wb') as file: | |
pickle.dump(tokeniser, file) |