ajibs75's picture
Update app.py
e476017 verified
# Use a pipeline as a high-level helper
import torch
from transformers import pipeline
from scipy.io import wavfile
from PIL import Image
import gradio as gr
device = "cuda" if torch.cuda.is_available() else "cpu"
image_pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large",device=device)
narator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs",device=device)
def generate_audio(text):
# generate the audio from the text
audio_text = narator(text)
# save the audio to a WAV file
wavfile.write(filename="audio.wav",
rate=audio_text['sampling_rate'],
data=audio_text['audio'][0])
return "audio.wav"
def caption_my_image(image_path):
image = image_pipe(image_path)
caption_text = image[0]['generated_text']
return generate_audio(caption_text)
demo = gr.Interface(fn=caption_my_image,
inputs=[gr.Image(label="Image",type="pil")],
outputs=[gr.Audio(label="Image Caption")],
title="@SmartChoiceLearningHub HF Project 1 :Image to Text to Speech",
description="This app generates a caption for an image and converts the caption to speech.")
demo.launch()