ajibs75 commited on
Commit
8769c06
·
verified ·
1 Parent(s): 7cfaee3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageDraw,ImageFont
2
+ import gradio as gr
3
+ import torch
4
+ from transformers import pipeline
5
+
6
+ modelname= "SenseTime/deformable-detr-with-box-refine"
7
+ modelpath = 'models/models--SenseTime--deformable-detr-with-box-refine/snapshots/2e9e461623a8fdc296e19666c46c8a4389a3a6fe'
8
+
9
+ def draw_bounding_boxes(image, detections, color=(0, 255, 0), thickness=2, font_path=None, font_size=12):
10
+ draw = ImageDraw.Draw(image)
11
+ for detection in detections:
12
+ xmin, ymin, xmax, ymax = detection['box']['xmin'], detection['box']['ymin'], detection['box']['xmax'], detection['box']['ymax']
13
+ draw.rectangle(((xmin, ymin), (xmax, ymax)), outline=color, width=thickness)
14
+ if font_path:
15
+ try:
16
+ font = ImageFont.truetype(font_path, font_size)
17
+ label_text = f"{detection['label']}: {detection['score']:.2f}"
18
+ text_width, text_height = draw.textsize(label_text, font=font)
19
+ draw.rectangle(((xmin, ymin), (xmin + text_width + 5, ymin + text_height + 5)), fill=(0, 0, 0, 0.5)) # Semi-transparent black background
20
+ draw.text((xmin, ymin), label_text, fill=color, font=font)
21
+ except (IOError, OSError):
22
+ print(f"Warning: Could not load font '{font_path}'. Labels will not be drawn.")
23
+ return image
24
+
25
+
26
+ def hf_pipeline(model_name=None,model_path=None):
27
+ model = model_path if model_name == None else model_name
28
+ print(f"=============model: {model} =============")
29
+ device = "cuda" if torch.cuda.is_available() else "cpu"
30
+ image_detector = pipeline("object-detection", model=model,device=device)
31
+ return image_detector
32
+
33
+
34
+ def detect_image_withbox(image):
35
+ obj_detector = hf_pipeline(modelname)
36
+ detections = obj_detector(image)
37
+ image_with_boxes = draw_bounding_boxes(image.copy(), detections)
38
+ print(detections)
39
+ return image_with_boxes
40
+
41
+
42
+
43
+ demo = gr.Interface(fn=detect_image_withbox,
44
+ inputs=[gr.Image(label="Select Image",type="pil")],
45
+ outputs=[gr.Image(label="Processed Image With Boxes", type="pil")],
46
+ title="@SmartChoiceLearningHub HF Project 2 : Object Detector With Box",
47
+ description="This app detects objects in an image and draws bounding boxes around them.")
48
+ demo.launch()