ajeetkumar01 commited on
Commit
57f5d5d
1 Parent(s): c4a1e99

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ import gradio as gr
3
+
4
+ # Load pre-trained model and tokenizer
5
+ model_name = "mistralai/Mistral-7B-Instruct-v0.2"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
8
+
9
+ def generate_response(messages):
10
+ """
11
+ Generate response based on the given user messages.
12
+ Parameters:
13
+ - messages (list): A list of dictionaries containing user messages with roles.
14
+ Returns:
15
+ - response (str): The generated response.
16
+ """
17
+ # Apply chat template and encode messages
18
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
19
+ # Move inputs to device
20
+ model_inputs = encodeds.to("cuda") # Assuming CUDA device is available
21
+ # Generate response
22
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
23
+ # Decode the generated response
24
+ response = tokenizer.batch_decode(generated_ids)[0]
25
+ return response
26
+
27
+ # Define Gradio interface components
28
+ input_chat = gr.Textbox(lines=5, label="Input Chat", placeholder="Enter chat messages...")
29
+ output_response = gr.Textbox(label="Generated Response", placeholder="Generated response will appear here...")
30
+
31
+ # Create Gradio interface
32
+ gr.Interface(generate_response, input_chat, output_response,
33
+ title="Chat Response Generation",
34
+ description="Generate responses based on user messages using Mistral AI model.",
35
+ theme="default",
36
+ allow_flagging="never").launch()