|
import gradio as gr |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
model_name = "gpt2-large" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name).to(device) |
|
|
|
|
|
def generate_text(input_text, max_length=16, num_beams=5, do_sample=False, no_repeat_ngram_size=2): |
|
""" |
|
Generate text based on the given input text. |
|
|
|
Parameters: |
|
- input_text (str): The input text to start generation from. |
|
- max_length (int): Maximum length of the generated text. |
|
- num_beams (int): Number of beams for beam search. |
|
- do_sample (bool): Whether to use sampling or not. |
|
- no_repeat_ngram_size (int): Size of the n-gram to avoid repetition. |
|
|
|
Returns: |
|
- generated_text (str): The generated text. |
|
""" |
|
|
|
input_ids = tokenizer(input_text, return_tensors='pt')['input_ids'].to(device) |
|
|
|
output = model.generate(input_ids, max_length=max_length, num_beams=num_beams, |
|
do_sample=do_sample, no_repeat_ngram_size=no_repeat_ngram_size) |
|
|
|
generated_text = tokenizer.decode(output[0]) |
|
return generated_text |
|
|
|
|
|
def generate_text_with_nucleus_search(input_text, max_length=16, do_sample=True, top_p=0.9): |
|
""" |
|
Generate text with nucleus sampling based on the given input text. |
|
|
|
Parameters: |
|
- input_text (str): The input text to start generation from. |
|
- max_length (int): Maximum length of the generated text. |
|
- do_sample (bool): Whether to use sampling or not. |
|
- top_p (float): Nucleus sampling parameter. |
|
|
|
Returns: |
|
- generated_text (str): The generated text. |
|
""" |
|
|
|
input_ids = tokenizer(input_text, return_tensors='pt')['input_ids'].to(device) |
|
|
|
output = model.generate(input_ids, max_length=max_length, do_sample=do_sample, top_p=top_p) |
|
|
|
generated_text = tokenizer.decode(output[0]) |
|
return generated_text |
|
|
|
|
|
|
|
input_textbox = gr.Textbox(lines=7, label="Input Text", placeholder="Enter your text here...") |
|
output_textbox = gr.Textbox(label="Generated Text", placeholder="Generated text will appear here...") |
|
|
|
gr.Interface( |
|
[generate_text, generate_text_with_nucleus_search], |
|
inputs=input_textbox, |
|
outputs=output_textbox, |
|
title="Text Generation with GPT-2", |
|
description="Enter some text and generate new text using GPT-2 model.", |
|
allow_flagging=False |
|
).launch(share=True) |