Spaces:
Build error
Build error
Commit
·
c725fc9
1
Parent(s):
6f2e64e
Add application file
Browse files
app.py
CHANGED
|
@@ -1,8 +1,61 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
|
| 6 |
-
|
| 7 |
-
demo.launch()
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
# Use a pipeline as a high-level helper
|
| 4 |
+
from transformers import pipeline
|
| 5 |
|
| 6 |
+
detector = pipeline("object-detection", model="hustvl/yolos-tiny")
|
|
|
|
| 7 |
|
| 8 |
+
# Load model directly
|
| 9 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 10 |
+
|
| 11 |
+
processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
| 12 |
+
model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50")
|
| 13 |
+
def food_classifier(image):
|
| 14 |
+
inputs = processor(image, return_tensors="pt")
|
| 15 |
+
logits = model(**inputs).logits
|
| 16 |
+
predicted_label = logits.argmax(-1).item()
|
| 17 |
+
label = model.config.id2label[predicted_label]
|
| 18 |
+
return [{'label': label, 'score': 0.0}]
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Use a pipeline as a high-level helper
|
| 22 |
+
from transformers import pipeline
|
| 23 |
+
|
| 24 |
+
food_classifier = pipeline("image-classification", model="facebook/deit-base-distilled-patch16-384")
|
| 25 |
+
|
| 26 |
+
def get_ingridients_list(image, score_threshold=.85):
|
| 27 |
+
objects = detector(image)
|
| 28 |
+
ingridients = []
|
| 29 |
+
for obj in objects:
|
| 30 |
+
cropped_image = image.crop((obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax']))
|
| 31 |
+
classes = food_classifier(cropped_image)
|
| 32 |
+
best_match = max(classes, key=lambda x: x['score'])
|
| 33 |
+
if best_match['score'] > score_threshold:
|
| 34 |
+
ingridients.append(best_match['label'])
|
| 35 |
+
return list(set(ingridients))
|
| 36 |
+
|
| 37 |
+
def get_ingridients(image):
|
| 38 |
+
ingridients = get_ingridients_list(image)
|
| 39 |
+
return ', '.join(ingridients)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
#text_to_text = pipeline("text-generation", model="ai-forever/mGPT")
|
| 43 |
+
|
| 44 |
+
def get_reciepe(ingridients):
|
| 45 |
+
return 'dish of ' + ingridients
|
| 46 |
+
|
| 47 |
+
def get_answer(image):
|
| 48 |
+
ingridients = get_ingridients(image)
|
| 49 |
+
return get_reciepe(ingridients)
|
| 50 |
+
|
| 51 |
+
# Create a Gradio interface
|
| 52 |
+
iface = gr.Interface(
|
| 53 |
+
fn=get_answer, # Function to call
|
| 54 |
+
inputs=gr.Image(label="Upload an image", type="pil"), # Input type: Image
|
| 55 |
+
outputs=gr.Markdown(label="Classification Result"), # Output type: Markdown
|
| 56 |
+
title="Food Ingredient Classifier",
|
| 57 |
+
description="Upload an image of a food ingredient to classify it."
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Launch the Gradio app
|
| 61 |
+
iface.launch()
|