Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,9 @@ from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
|
4 |
import torch
|
5 |
import logging
|
6 |
import sys
|
|
|
|
|
|
|
7 |
|
8 |
# Set up logging
|
9 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
@@ -41,9 +44,8 @@ def clean_answer(answer):
|
|
41 |
cleaned_answer = ' '.join(token for token in answer.split() if token not in special_tokens)
|
42 |
return cleaned_answer.strip()
|
43 |
|
44 |
-
def answer_question(question
|
45 |
logger.info(f"Received question: {question}")
|
46 |
-
logger.info(f"Parameters: temp={temperature}, max_tokens={max_new_tokens}, top_p={top_p}, freq_penalty={frequency_penalty}, pres_penalty={presence_penalty}, top_k={top_k}, echo={echo}, best_of={best_of}")
|
47 |
|
48 |
try:
|
49 |
logger.info("Combining text from dataset")
|
@@ -69,36 +71,69 @@ def answer_question(question, system_prompt, temperature, max_new_tokens, top_p,
|
|
69 |
logger.warning("Generated answer was empty after cleaning")
|
70 |
answer = "I'm sorry, but I couldn't find a specific answer to that question based on the Bhagavad Gita. Could you please rephrase your question or ask about one of the core concepts like dharma, karma, bhakti, or the different types of yoga discussed in the Gita?"
|
71 |
|
72 |
-
disclaimer = "\n\nPlease note: This response is generated by an AI model based on the Bhagavad Gita. For authoritative information, please consult the original text or scholarly sources."
|
73 |
-
full_response = answer + disclaimer
|
74 |
logger.info("Answer generated successfully")
|
75 |
|
76 |
-
return
|
77 |
|
78 |
except Exception as e:
|
79 |
logger.error(f"Error in answer_question function: {str(e)}")
|
80 |
return "I'm sorry, but an error occurred while processing your question. Please try again later."
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
iface = gr.Interface(
|
84 |
fn=answer_question,
|
85 |
-
inputs=
|
86 |
-
gr.Textbox(lines=2, placeholder="Enter your question here..."),
|
87 |
-
gr.Textbox(lines=2, placeholder="System prompt (optional)"),
|
88 |
-
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label="Temperature"),
|
89 |
-
gr.Slider(minimum=1, maximum=500, step=1, value=250, label="Max new tokens"),
|
90 |
-
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.95, label="Top p"),
|
91 |
-
gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Frequency penalty"),
|
92 |
-
gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Presence penalty"),
|
93 |
-
gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Top k"),
|
94 |
-
gr.Checkbox(label="Echo"),
|
95 |
-
gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Best of")
|
96 |
-
],
|
97 |
outputs="text",
|
98 |
title="Bhagavad Gita Q&A",
|
99 |
description="Ask a question about the Bhagavad Gita, and get an answer based on the dataset."
|
100 |
)
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
import logging
|
6 |
import sys
|
7 |
+
from fastapi import FastAPI, HTTPException
|
8 |
+
from pydantic import BaseModel
|
9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
10 |
|
11 |
# Set up logging
|
12 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
44 |
cleaned_answer = ' '.join(token for token in answer.split() if token not in special_tokens)
|
45 |
return cleaned_answer.strip()
|
46 |
|
47 |
+
def answer_question(question):
|
48 |
logger.info(f"Received question: {question}")
|
|
|
49 |
|
50 |
try:
|
51 |
logger.info("Combining text from dataset")
|
|
|
71 |
logger.warning("Generated answer was empty after cleaning")
|
72 |
answer = "I'm sorry, but I couldn't find a specific answer to that question based on the Bhagavad Gita. Could you please rephrase your question or ask about one of the core concepts like dharma, karma, bhakti, or the different types of yoga discussed in the Gita?"
|
73 |
|
|
|
|
|
74 |
logger.info("Answer generated successfully")
|
75 |
|
76 |
+
return answer
|
77 |
|
78 |
except Exception as e:
|
79 |
logger.error(f"Error in answer_question function: {str(e)}")
|
80 |
return "I'm sorry, but an error occurred while processing your question. Please try again later."
|
81 |
|
82 |
+
# FastAPI setup
|
83 |
+
app = FastAPI()
|
84 |
+
|
85 |
+
# Add CORS middleware
|
86 |
+
app.add_middleware(
|
87 |
+
CORSMiddleware,
|
88 |
+
allow_origins=["*"], # Allows all origins
|
89 |
+
allow_credentials=True,
|
90 |
+
allow_methods=["*"], # Allows all methods
|
91 |
+
allow_headers=["*"], # Allows all headers
|
92 |
+
)
|
93 |
+
|
94 |
+
class Question(BaseModel):
|
95 |
+
messages: list
|
96 |
+
|
97 |
+
@app.post("/predict")
|
98 |
+
async def predict(question: Question):
|
99 |
+
try:
|
100 |
+
last_user_message = next((msg for msg in reversed(question.messages) if msg['role'] == 'user'), None)
|
101 |
+
|
102 |
+
if not last_user_message:
|
103 |
+
raise HTTPException(status_code=400, detail="No user message found")
|
104 |
+
|
105 |
+
user_question = last_user_message['content']
|
106 |
+
|
107 |
+
answer = answer_question(user_question)
|
108 |
+
|
109 |
+
disclaimer = "\n\nPlease note: This response is generated by an AI model based on the Bhagavad Gita. For authoritative information, please consult the original text or scholarly sources."
|
110 |
+
full_response = answer + disclaimer
|
111 |
+
|
112 |
+
return {"response": full_response, "isTruncated": False}
|
113 |
+
|
114 |
+
except Exception as e:
|
115 |
+
logger.error(f"Error in predict function: {str(e)}")
|
116 |
+
raise HTTPException(status_code=500, detail=str(e))
|
117 |
+
|
118 |
+
# Gradio interface (optional, for testing)
|
119 |
iface = gr.Interface(
|
120 |
fn=answer_question,
|
121 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
outputs="text",
|
123 |
title="Bhagavad Gita Q&A",
|
124 |
description="Ask a question about the Bhagavad Gita, and get an answer based on the dataset."
|
125 |
)
|
126 |
|
127 |
+
# Run both FastAPI and Gradio
|
128 |
+
if __name__ == "__main__":
|
129 |
+
import uvicorn
|
130 |
+
import threading
|
131 |
+
import nest_asyncio
|
132 |
+
|
133 |
+
nest_asyncio.apply()
|
134 |
+
|
135 |
+
def run_fastapi():
|
136 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
137 |
+
|
138 |
+
threading.Thread(target=run_fastapi, daemon=True).start()
|
139 |
+
iface.launch()
|