Spaces:
Running
Running
ajaydamsani
commited on
Commit
•
a040b04
1
Parent(s):
c7d2876
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow as tf
|
7 |
+
import streamlit as st
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
|
10 |
+
# Load the pre-trained model and class indices
|
11 |
+
working_dir = os.path.dirname(os.path.abspath(__file__))
|
12 |
+
model_path = f"{working_dir}/trained model/crop_disease_detection_model.h5"
|
13 |
+
model = tf.keras.models.load_model(model_path)
|
14 |
+
class_indices = json.load(open(f"{working_dir}/class_indices.json"))
|
15 |
+
|
16 |
+
# Function to Load and Preprocess the Image using Pillow
|
17 |
+
def load_and_preprocess_image(image_path, target_size=(224, 224)):
|
18 |
+
img = Image.open(image_path)
|
19 |
+
img = img.resize(target_size)
|
20 |
+
img_array = np.array(img)
|
21 |
+
img_array = np.expand_dims(img_array, axis=0)
|
22 |
+
img_array = img_array.astype('float32') / 255.
|
23 |
+
return img_array
|
24 |
+
|
25 |
+
# Function to Predict the Class of an Image
|
26 |
+
def predict_image_class(model, img_array, class_indices):
|
27 |
+
predictions = model.predict(img_array)
|
28 |
+
predicted_class_index = np.argmax(predictions, axis=1)[0]
|
29 |
+
predicted_class_name = class_indices[str(predicted_class_index)]
|
30 |
+
confidence_score = predictions[0][predicted_class_index]
|
31 |
+
return predicted_class_name, confidence_score
|
32 |
+
|
33 |
+
# Streamlit App
|
34 |
+
st.title('Plant Disease Classifier')
|
35 |
+
|
36 |
+
# Upload and preprocess the image only once
|
37 |
+
uploaded_image = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
|
38 |
+
if uploaded_image is not None:
|
39 |
+
img_array = load_and_preprocess_image(uploaded_image)
|
40 |
+
st.session_state.img_array = img_array
|
41 |
+
st.session_state.image_uploaded = True
|
42 |
+
|
43 |
+
# Display tabs for Identification and Visualization side by side
|
44 |
+
col1, col2 = st.columns(2)
|
45 |
+
with col1:
|
46 |
+
if st.button('Identification'):
|
47 |
+
st.session_state.tab_selected = 'Identification'
|
48 |
+
with col2:
|
49 |
+
if st.button('Visualization'):
|
50 |
+
st.session_state.tab_selected = 'Visualization'
|
51 |
+
|
52 |
+
selected_tab = st.session_state.get('tab_selected', 'Identification')
|
53 |
+
|
54 |
+
if st.session_state.get('image_uploaded', False):
|
55 |
+
if selected_tab == 'Identification':
|
56 |
+
st.header('Plant Disease Identification')
|
57 |
+
st.image(uploaded_image, caption='Uploaded Image', use_column_width=False)
|
58 |
+
predicted_class, confidence_score = predict_image_class(model, img_array, class_indices)
|
59 |
+
st.write(f'Prediction: {predicted_class} ({confidence_score:.2f} confidence)')
|
60 |
+
|
61 |
+
elif selected_tab == 'Visualization':
|
62 |
+
st.header('Confidence Scores Visualization')
|
63 |
+
plt.figure(figsize=(12, 6)) # Smaller graph size
|
64 |
+
plt.bar(class_indices.values(), model.predict(img_array)[0])
|
65 |
+
plt.xlabel('Class')
|
66 |
+
plt.ylabel('Confidence Score')
|
67 |
+
plt.xticks(rotation=90, ha='right')
|
68 |
+
plt.title('Confidence Scores for Predicted Classes')
|
69 |
+
st.pyplot(plt)
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|