Spaces:
Runtime error
Runtime error
# General | |
import sys | |
from pathlib import Path | |
import torch | |
from pytorch_lightning import LightningDataModule | |
# For Stage-1 | |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter | |
from diffusers import StableVideoDiffusionPipeline, AutoPipelineForText2Image | |
# For Stage-2 | |
import tempfile | |
import yaml | |
from t2v_enhanced.model.video_ldm import VideoLDM | |
from t2v_enhanced.model.callbacks import SaveConfigCallback | |
from t2v_enhanced.inference_utils import legacy_transformation, remove_value, CustomCLI | |
# For Stage-3 | |
from modelscope.pipelines import pipeline | |
# Initialize Stage-1 model1. | |
def init_modelscope(device="cuda"): | |
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16") | |
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
# pipe.set_progress_bar_config(disable=True) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_model_cpu_offload() | |
pipe.enable_vae_slicing() | |
pipe.set_progress_bar_config(disable=True) | |
return pipe.to(device) | |
def init_zeroscope(device="cuda"): | |
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16) | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_model_cpu_offload() | |
return pipe.to(device) | |
def init_animatediff(device="cuda"): | |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16) | |
model_id = "SG161222/Realistic_Vision_V5.1_noVAE" | |
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16) | |
scheduler = DDIMScheduler.from_pretrained( | |
model_id, | |
subfolder="scheduler", | |
clip_sample=False, | |
timestep_spacing="linspace", | |
beta_schedule="linear", | |
steps_offset=1, | |
) | |
pipe.scheduler = scheduler | |
pipe.enable_vae_slicing() | |
pipe.enable_model_cpu_offload() | |
return pipe.to(device) | |
def init_sdxl(device="cuda"): | |
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
# pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
return pipe.to(device) | |
def init_svd(device="cuda"): | |
pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16") | |
pipe.enable_model_cpu_offload() | |
return pipe.to(device) | |
# Initialize StreamingT2V model. | |
def init_streamingt2v_model(ckpt_file, result_fol): | |
config_file = "t2v_enhanced/configs/text_to_video/config.yaml" | |
sys.argv = sys.argv[:1] | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
storage_fol = Path(tmpdirname) | |
with open(config_file, "r") as yaml_handle: | |
yaml_obj = yaml.safe_load(yaml_handle) | |
yaml_obj_orig_data_cfg = legacy_transformation(yaml_obj) | |
yaml_obj_orig_data_cfg = remove_value(yaml_obj_orig_data_cfg, "video_dataset") | |
with open(storage_fol / 'config.yaml', 'w') as outfile: | |
yaml.dump(yaml_obj_orig_data_cfg, outfile, default_flow_style=False) | |
sys.argv.append("--config") | |
sys.argv.append((storage_fol / 'config.yaml').as_posix()) | |
sys.argv.append("--ckpt") | |
sys.argv.append(ckpt_file.as_posix()) | |
sys.argv.append("--result_fol") | |
sys.argv.append(result_fol.as_posix()) | |
sys.argv.append("--config") | |
sys.argv.append("t2v_enhanced/configs/inference/inference_long_video.yaml") | |
sys.argv.append("--data.prompt_cfg.type=prompt") | |
sys.argv.append(f"--data.prompt_cfg.content='test prompt for initialization'") | |
sys.argv.append("--trainer.devices=1") | |
sys.argv.append("--trainer.num_nodes=1") | |
sys.argv.append(f"--model.inference_params.num_inference_steps=50") | |
sys.argv.append(f"--model.inference_params.n_autoregressive_generations=4") | |
sys.argv.append("--model.inference_params.concat_video=True") | |
sys.argv.append("--model.inference_params.result_formats=[eval_mp4]") | |
cli = CustomCLI(VideoLDM, LightningDataModule, run=False, subclass_mode_data=True, | |
auto_configure_optimizers=False, parser_kwargs={"parser_mode": "omegaconf"}, save_config_callback=SaveConfigCallback, save_config_kwargs={"log_dir": result_fol, "overwrite": True}) | |
model = cli.model | |
model.load_state_dict(torch.load( | |
cli.config["ckpt"].as_posix(), map_location=torch.device('cpu'))["state_dict"], strict=False) | |
return cli, model | |
# Initialize Stage-3 model. | |
def init_v2v_model(cfg, device): | |
model_id = cfg['model_id'] | |
pipe_enhance = pipeline(task="video-to-video", model=model_id, model_revision='v1.1.0', device='cpu') | |
pipe_enhance.device = device | |
pipe_enhance.model = pipe_enhance.model.to(device) | |
pipe_enhance.model.device = device | |
pipe_enhance.model.clip_encoder.model = pipe_enhance.model.clip_encoder.model.to(device) | |
pipe_enhance.model.clip_encoder.device = device | |
pipe_enhance.model.autoencoder = pipe_enhance.model.autoencoder.to(device) | |
pipe_enhance.model.generator = pipe_enhance.model.generator.to(device) | |
pipe_enhance.model.generator = pipe_enhance.model.generator.half() | |
pipe_enhance.model.negative_y = pipe_enhance.model.negative_y.to(device) | |
pipe_enhance.model.cfg.max_frames = 10000 | |
return pipe_enhance |