SLM-RAG-Arena / utils /models.py
oliver-aizip's picture
upgraded highlighting, added bitnet
491e00d
raw
history blame
4.6 kB
import os
os.environ['MKL_THREADING_LAYER'] = 'GNU'
import spaces
import torch
from transformers import pipeline, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
from .prompts import format_rag_prompt
from .shared import generation_interrupt
models = {
"Qwen2.5-1.5b-Instruct": "qwen/qwen2.5-1.5b-instruct",
"Qwen2.5-3b-Instruct": "qwen/qwen2.5-3b-instruct",
"Llama-3.2-1b-Instruct": "meta-llama/llama-3.2-1b-instruct",
"Llama-3.2-3b-Instruct": "meta-llama/llama-3.2-3b-instruct",
"Gemma-3-1b-it": "google/gemma-3-1b-it",
#"Gemma-3-4b-it": "google/gemma-3-4b-it",
"Gemma-2-2b-it": "google/gemma-2-2b-it",
"Phi-4-mini-instruct": "microsoft/phi-4-mini-instruct",
#"Cogito-v1-preview-llama-3b": "deepcogito/cogito-v1-preview-llama-3b",
"IBM Granite-3.3-2b-instruct": "ibm-granite/granite-3.3-2b-instruct",
"Bitnet-b1.58-2B4T": "microsoft/bitnet-b1.58-2B-4T"
}
# List of model names for easy access
model_names = list(models.keys())
# Custom stopping criteria that checks the interrupt flag
class InterruptCriteria(StoppingCriteria):
def __init__(self, interrupt_event):
self.interrupt_event = interrupt_event
def __call__(self, input_ids, scores, **kwargs):
return self.interrupt_event.is_set()
@spaces.GPU
def generate_summaries(example, model_a_name, model_b_name):
"""
Generates summaries for the given example using the assigned models sequentially.
"""
if generation_interrupt.is_set():
return "", ""
context_text = ""
context_parts = []
if "full_contexts" in example and example["full_contexts"]:
for i, ctx in enumerate(example["full_contexts"]):
content = ""
# Extract content from either dict or string
if isinstance(ctx, dict) and "content" in ctx:
content = ctx["content"]
elif isinstance(ctx, str):
content = ctx
# Add document number if not already present
if not content.strip().startswith("Document"):
content = f"Document {i+1}:\n{content}"
context_parts.append(content)
context_text = "\n\n".join(context_parts)
else:
# Provide a graceful fallback instead of raising an error
print("Warning: No full context found in the example, using empty context")
context_text = ""
question = example.get("question", "")
if generation_interrupt.is_set():
return "", ""
# Run model A
summary_a = run_inference(models[model_a_name], context_text, question)
if generation_interrupt.is_set():
return summary_a, ""
# Run model B
summary_b = run_inference(models[model_b_name], context_text, question)
return summary_a, summary_b
@spaces.GPU
def run_inference(model_name, context, question):
"""
Run inference using the specified model.
Returns the generated text or empty string if interrupted.
"""
# Check interrupt at the beginning
if generation_interrupt.is_set():
return ""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
result = ""
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", token=True)
accepts_sys = (
"System role not supported" not in tokenizer.chat_template
if tokenizer.chat_template else False # Handle missing chat_template
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Check interrupt before loading the model
if generation_interrupt.is_set():
return ""
pipe = pipeline(
"text-generation",
model=model_name,
tokenizer=tokenizer,
device_map='auto',
max_length=512,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
text_input = format_rag_prompt(question, context, accepts_sys)
# Check interrupt before generation
if generation_interrupt.is_set():
return ""
outputs = pipe(text_input, max_new_tokens=512)
result = outputs[0]['generated_text'][-1]['content']
except Exception as e:
print(f"Error in inference for {model_name}: {e}")
result = f"Error generating response: {str(e)[:200]}..."
finally:
# Clean up resources
if torch.cuda.is_available():
torch.cuda.empty_cache()
return result