Spaces:
Sleeping
Sleeping
aixsatoshi
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,24 @@
|
|
1 |
-
import torch
|
2 |
-
from PIL import Image
|
3 |
-
import gradio as gr
|
4 |
import spaces
|
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
-
import
|
7 |
from threading import Thread
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
TITLE = "<h1><center>Llama-3-
|
15 |
|
16 |
-
DESCRIPTION =
|
17 |
-
<h3>MODEL: <a href="https://hf.co/
|
18 |
<center>
|
19 |
-
<p>
|
20 |
-
<p>Llama-3-youko-8B is the large language model built by rinna.
|
21 |
-
<br>
|
22 |
-
Feel free to test without log.
|
23 |
-
</p>
|
24 |
</center>
|
25 |
"""
|
26 |
|
@@ -42,24 +40,15 @@ h3 {
|
|
42 |
}
|
43 |
"""
|
44 |
|
45 |
-
|
46 |
-
model = AutoModelForCausalLM.from_pretrained(
|
47 |
-
MODEL_ID,
|
48 |
-
torch_dtype=torch.float16,
|
49 |
-
device_map="auto",
|
50 |
-
)
|
51 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
52 |
-
|
53 |
-
@spaces.GPU
|
54 |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
|
55 |
-
print(f'
|
56 |
-
print(f'
|
|
|
57 |
conversation = []
|
58 |
for prompt, answer in history:
|
59 |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
60 |
conversation.append({"role": "user", "content": message})
|
61 |
-
|
62 |
-
#print(f"Conversation is -\n{conversation}")
|
63 |
|
64 |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
65 |
inputs = tokenizer(input_ids, return_tensors="pt").to(0)
|
@@ -75,7 +64,7 @@ def stream_chat(message: str, history: list, temperature: float, max_new_tokens:
|
|
75 |
max_new_tokens=max_new_tokens,
|
76 |
do_sample=True,
|
77 |
temperature=temperature,
|
78 |
-
eos_token_id
|
79 |
)
|
80 |
|
81 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
@@ -86,8 +75,6 @@ def stream_chat(message: str, history: list, temperature: float, max_new_tokens:
|
|
86 |
buffer += new_text
|
87 |
yield buffer
|
88 |
|
89 |
-
|
90 |
-
|
91 |
chatbot = gr.Chatbot(height=500)
|
92 |
|
93 |
with gr.Blocks(css=CSS) as demo:
|
@@ -145,15 +132,14 @@ with gr.Blocks(css=CSS) as demo:
|
|
145 |
),
|
146 |
],
|
147 |
examples=[
|
148 |
-
["
|
149 |
-
["
|
150 |
-
["
|
151 |
-
["
|
152 |
],
|
153 |
cache_examples=False,
|
154 |
)
|
155 |
|
156 |
-
|
157 |
-
|
158 |
if __name__ == "__main__":
|
159 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
+
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
+
import gradio as gr
|
5 |
from threading import Thread
|
6 |
|
7 |
+
model_id = "hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
model_id,
|
11 |
+
torch_dtype=torch.float16,
|
12 |
+
low_cpu_mem_usage=True,
|
13 |
+
device_map="auto",
|
14 |
+
)
|
15 |
|
16 |
+
TITLE = "<h1><center>Meta-Llama-3.1-70B-Instruct-AWQ-INT4 Chat webui</center></h1>"
|
17 |
|
18 |
+
DESCRIPTION = """
|
19 |
+
<h3>MODEL: <a href="https://hf.co/hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4">Meta-Llama-3.1-70B-Instruct-AWQ-INT4</a></h3>
|
20 |
<center>
|
21 |
+
<p>This model is designed for conversational interactions.</p>
|
|
|
|
|
|
|
|
|
22 |
</center>
|
23 |
"""
|
24 |
|
|
|
40 |
}
|
41 |
"""
|
42 |
|
43 |
+
@gr.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
|
45 |
+
print(f'Message: {message}')
|
46 |
+
print(f'History: {history}')
|
47 |
+
|
48 |
conversation = []
|
49 |
for prompt, answer in history:
|
50 |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
51 |
conversation.append({"role": "user", "content": message})
|
|
|
|
|
52 |
|
53 |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
54 |
inputs = tokenizer(input_ids, return_tensors="pt").to(0)
|
|
|
64 |
max_new_tokens=max_new_tokens,
|
65 |
do_sample=True,
|
66 |
temperature=temperature,
|
67 |
+
eos_token_id=[128001, 128009],
|
68 |
)
|
69 |
|
70 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
|
|
75 |
buffer += new_text
|
76 |
yield buffer
|
77 |
|
|
|
|
|
78 |
chatbot = gr.Chatbot(height=500)
|
79 |
|
80 |
with gr.Blocks(css=CSS) as demo:
|
|
|
132 |
),
|
133 |
],
|
134 |
examples=[
|
135 |
+
["Explain Deep Learning as a pirate."],
|
136 |
+
["Give me five ideas for a child's summer science project."],
|
137 |
+
["Provide advice for writing a script for a puzzle game."],
|
138 |
+
["Create a tutorial for building a breakout game using markdown."],
|
139 |
],
|
140 |
cache_examples=False,
|
141 |
)
|
142 |
|
|
|
|
|
143 |
if __name__ == "__main__":
|
144 |
demo.launch()
|
145 |
+
|