|
|
|
|
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
import gradio as gr |
|
from threading import Thread |
|
|
|
model_id = "Aratako/sarashina2.1-1b-sft" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="cpu", |
|
) |
|
|
|
TITLE = "<h1><center>Aratako/sarashina2.1-1b-sft by CPU</center></h1>" |
|
|
|
DESCRIPTION = """ |
|
<h3>MODEL: <a href="https://huggingface.co/Aratako/sarashina2.1-1b-sft">Aratako/sarashina2.1-1b-sft</a></h3> |
|
<center> |
|
<p>This model is designed for conversational interactions.</p> |
|
</center> |
|
""" |
|
|
|
CSS = """ |
|
.duplicate-button { |
|
margin: auto !important; |
|
color: white !important; |
|
background: black !important; |
|
border-radius: 100vh !important; |
|
} |
|
h3 { |
|
text-align: center; |
|
} |
|
.chatbox .messages .message.user { |
|
background-color: #e1f5fe; |
|
} |
|
.chatbox .messages .message.bot { |
|
background-color: #eeeeee; |
|
} |
|
""" |
|
|
|
|
|
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float): |
|
print(f'Message: {message}') |
|
print(f'History: {history}') |
|
|
|
conversation = [] |
|
for prompt, answer in history: |
|
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) |
|
|
|
generate_kwargs = dict( |
|
input_ids=input_ids, |
|
streamer=streamer, |
|
top_k=top_k, |
|
top_p=top_p, |
|
repetition_penalty=penalty, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
|
|
) |
|
|
|
thread = Thread(target=model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
buffer += new_text |
|
yield buffer |
|
|
|
chatbot = gr.Chatbot(height=500) |
|
|
|
with gr.Blocks(css=CSS) as demo: |
|
gr.HTML(TITLE) |
|
gr.HTML(DESCRIPTION) |
|
gr.ChatInterface( |
|
fn=stream_chat, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
theme="soft", |
|
retry_btn=None, |
|
undo_btn="Delete Previous", |
|
clear_btn="Clear", |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), |
|
additional_inputs=[ |
|
gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.8, |
|
label="Temperature", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=128, |
|
maximum=4096, |
|
step=1, |
|
value=1024, |
|
label="Max new tokens", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.8, |
|
label="top_p", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=1, |
|
maximum=20, |
|
step=1, |
|
value=20, |
|
label="top_k", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=2.0, |
|
step=0.1, |
|
value=1.2, |
|
label="Repetition penalty", |
|
render=False, |
|
), |
|
], |
|
examples=[ |
|
["Explain Deep Learning as a pirate."], |
|
["Give me five ideas for a child's summer science project."], |
|
["Provide advice for writing a script for a puzzle game."], |
|
["Create a tutorial for building a breakout game using markdown."], |
|
["超能力を持つ主人公のSF物語のシナリオを考えてください。伏線の設定、テーマやログラインを理論的に使用してください"], |
|
["子供の夏休みの自由研究のための、5つのアイデアと、その手法を簡潔に教えてください。"], |
|
["パズルゲームのスクリプト作成のためにアドバイスお願いします"], |
|
["マークダウン記法にて、ブロック崩しのゲーム作成の教科書作成してください"], |
|
["お笑いのトンチ大会のお題を考えてください"], |
|
["日本語の慣用句、ことわざについての試験問題を考えてください"], |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|