aixsatoshi commited on
Commit
b4fa047
·
verified ·
1 Parent(s): 821c61e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -62
app.py CHANGED
@@ -1,63 +1,57 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import spaces
3
+ from mistral_inference.transformer import Transformer
4
+ from mistral_inference.generate import generate
5
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
6
+ from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk
7
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
8
+ from huggingface_hub import snapshot_download
9
+ from pathlib import Path
10
+
11
+ # モデルのダウンロードと準備
12
+ mistral_models_path = Path.home().joinpath('mistral_models', 'Pixtral')
13
+ mistral_models_path.mkdir(parents=True, exist_ok=True)
14
+
15
+ snapshot_download(repo_id="mistralai/Pixtral-12B-2409",
16
+ allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"],
17
+ local_dir=mistral_models_path)
18
+
19
+ # トークナイザーとモデルのロード
20
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
21
+ model = Transformer.from_folder(mistral_models_path)
22
+
23
+ # 推論処理
24
+ @spaces.GPU
25
+ def mistral_inference(prompt, image_url):
26
+ completion_request = ChatCompletionRequest(
27
+ messages=[UserMessage(content=[ImageURLChunk(image_url=image_url), TextChunk(text=prompt)])]
28
+ )
29
+
30
+ encoded = tokenizer.encode_chat_completion(completion_request)
31
+ images = encoded.images
32
+ tokens = encoded.tokens
33
+
34
+ out_tokens, _ = generate([tokens], model, images=[images], max_tokens=256, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
35
+ result = tokenizer.decode(out_tokens[0])
36
+
37
+ return result
38
+
39
+ # Gradio インターフェース
40
+ def process_input(text, image_url):
41
+ result = mistral_inference(text, image_url)
42
+ return result
43
+
44
+ with gr.Blocks() as demo:
45
+ gr.Markdown("## Pixtralモデルによる画像説明生成")
46
+
47
+ with gr.Row():
48
+ text_input = gr.Textbox(label="テキストプロンプト", placeholder="例: Describe the image.")
49
+ image_input = gr.Textbox(label="画像URL", placeholder="例: https://example.com/image.png")
50
+
51
+ result_output = gr.Textbox(label="モデルの出力結果")
52
+
53
+ submit_button = gr.Button("推論を実行")
54
+
55
+ submit_button.click(process_input, inputs=[text_input, image_input], outputs=result_output)
56
+
57
+ demo.launch()