chatwithllama / app.py
aiwithankit's picture
Update app.py
d0f00bb verified
import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
from transformers import pipeline
import torch
model_id = "unsloth/Llama-3.2-1B-Instruct" # You can switch to 3B if needed
text_pipeline = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# prompt= input("Please enter your query: ")
# outputs = text_pipeline(prompt, max_new_tokens=150)
# response = outputs[0]["generated_text"]
# print(response)
import gradio as gr
def generated_response(prompt,history):
response = text_pipeline(prompt, max_new_tokens=150)
return response[0]["generated_text"]
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(generated_response,
title="This model is running on cpu so it will effect reasoning and inference time will be slow" # This sets the header title
)
if __name__ == "__main__":
demo.launch(share=True)