Spaces:
Sleeping
Sleeping
import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
from transformers import pipeline | |
import torch | |
model_id = "unsloth/Llama-3.2-1B-Instruct" # You can switch to 3B if needed | |
text_pipeline = pipeline( | |
"text-generation", | |
model=model_id, | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
) | |
# prompt= input("Please enter your query: ") | |
# outputs = text_pipeline(prompt, max_new_tokens=150) | |
# response = outputs[0]["generated_text"] | |
# print(response) | |
import gradio as gr | |
def generated_response(prompt,history): | |
response = text_pipeline(prompt, max_new_tokens=150) | |
return response[0]["generated_text"] | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface(generated_response, | |
title="This model is running on cpu so it will effect reasoning and inference time will be slow" # This sets the header title | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |