Spaces:
Running
on
Zero
Running
on
Zero
Migrate from yapf to black
Browse files
README.md
CHANGED
@@ -17,5 +17,3 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
|
|
17 |
Llama v2 was introduced in [this paper](https://arxiv.org/abs/2307.09288).
|
18 |
|
19 |
This Space demonstrates [Llama-2-7b-chat-hf](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/meta-llama/Llama-2-7b-chat-hf) from Meta. Please, check the original model card for details.
|
20 |
-
|
21 |
-
|
|
|
17 |
Llama v2 was introduced in [this paper](https://arxiv.org/abs/2307.09288).
|
18 |
|
19 |
This Space demonstrates [Llama-2-7b-chat-hf](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/meta-llama/Llama-2-7b-chat-hf) from Meta. Please, check the original model card for details.
|
|
|
|
app.py
CHANGED
@@ -33,26 +33,24 @@ this demo is governed by the original [license](https://huggingface.co/spaces/hu
|
|
33 |
"""
|
34 |
|
35 |
if not torch.cuda.is_available():
|
36 |
-
DESCRIPTION +=
|
37 |
|
38 |
|
39 |
def clear_and_save_textbox(message: str) -> tuple[str, str]:
|
40 |
-
return
|
41 |
|
42 |
|
43 |
-
def display_input(message: str,
|
44 |
-
|
45 |
-
history.append((message, ''))
|
46 |
return history
|
47 |
|
48 |
|
49 |
-
def delete_prev_fn(
|
50 |
-
history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
|
51 |
try:
|
52 |
message, _ = history.pop()
|
53 |
except IndexError:
|
54 |
-
message =
|
55 |
-
return history, message or
|
56 |
|
57 |
|
58 |
def generate(
|
@@ -73,7 +71,7 @@ def generate(
|
|
73 |
first_response = next(generator)
|
74 |
yield history + [(message, first_response)]
|
75 |
except StopIteration:
|
76 |
-
yield history + [(message,
|
77 |
for response in generator:
|
78 |
yield history + [(message, response)]
|
79 |
|
@@ -82,67 +80,63 @@ def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
|
|
82 |
generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
|
83 |
for x in generator:
|
84 |
pass
|
85 |
-
return
|
86 |
|
87 |
|
88 |
def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
|
89 |
input_token_length = get_input_token_length(message, chat_history, system_prompt)
|
90 |
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
|
91 |
-
raise gr.Error(
|
|
|
|
|
92 |
|
93 |
|
94 |
-
with gr.Blocks(css=
|
95 |
gr.Markdown(DESCRIPTION)
|
96 |
-
gr.DuplicateButton(value=
|
97 |
-
elem_id='duplicate-button')
|
98 |
|
99 |
with gr.Group():
|
100 |
-
chatbot = gr.Chatbot(label=
|
101 |
with gr.Row():
|
102 |
textbox = gr.Textbox(
|
103 |
container=False,
|
104 |
show_label=False,
|
105 |
-
placeholder=
|
106 |
scale=10,
|
107 |
)
|
108 |
-
submit_button = gr.Button(
|
109 |
-
variant='primary',
|
110 |
-
scale=1,
|
111 |
-
min_width=0)
|
112 |
with gr.Row():
|
113 |
-
retry_button = gr.Button(
|
114 |
-
undo_button = gr.Button(
|
115 |
-
clear_button = gr.Button(
|
116 |
|
117 |
saved_input = gr.State()
|
118 |
|
119 |
-
with gr.Accordion(label=
|
120 |
-
system_prompt = gr.Textbox(label=
|
121 |
-
value=DEFAULT_SYSTEM_PROMPT,
|
122 |
-
lines=6)
|
123 |
max_new_tokens = gr.Slider(
|
124 |
-
label=
|
125 |
minimum=1,
|
126 |
maximum=MAX_MAX_NEW_TOKENS,
|
127 |
step=1,
|
128 |
value=DEFAULT_MAX_NEW_TOKENS,
|
129 |
)
|
130 |
temperature = gr.Slider(
|
131 |
-
label=
|
132 |
minimum=0.1,
|
133 |
maximum=4.0,
|
134 |
step=0.1,
|
135 |
value=1.0,
|
136 |
)
|
137 |
top_p = gr.Slider(
|
138 |
-
label=
|
139 |
minimum=0.05,
|
140 |
maximum=1.0,
|
141 |
step=0.05,
|
142 |
value=0.95,
|
143 |
)
|
144 |
top_k = gr.Slider(
|
145 |
-
label=
|
146 |
minimum=1,
|
147 |
maximum=1000,
|
148 |
step=1,
|
@@ -151,10 +145,10 @@ with gr.Blocks(css='style.css') as demo:
|
|
151 |
|
152 |
gr.Examples(
|
153 |
examples=[
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
"Write a 100-word article on 'Benefits of Open-Source in AI research'",
|
159 |
],
|
160 |
inputs=textbox,
|
@@ -197,36 +191,41 @@ with gr.Blocks(css='style.css') as demo:
|
|
197 |
api_name=False,
|
198 |
)
|
199 |
|
200 |
-
button_event_preprocess =
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
230 |
)
|
231 |
|
232 |
retry_button.click(
|
@@ -271,7 +270,7 @@ with gr.Blocks(css='style.css') as demo:
|
|
271 |
)
|
272 |
|
273 |
clear_button.click(
|
274 |
-
fn=lambda: ([],
|
275 |
outputs=[chatbot, saved_input],
|
276 |
queue=False,
|
277 |
api_name=False,
|
|
|
33 |
"""
|
34 |
|
35 |
if not torch.cuda.is_available():
|
36 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
37 |
|
38 |
|
39 |
def clear_and_save_textbox(message: str) -> tuple[str, str]:
|
40 |
+
return "", message
|
41 |
|
42 |
|
43 |
+
def display_input(message: str, history: list[tuple[str, str]]) -> list[tuple[str, str]]:
|
44 |
+
history.append((message, ""))
|
|
|
45 |
return history
|
46 |
|
47 |
|
48 |
+
def delete_prev_fn(history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
|
|
|
49 |
try:
|
50 |
message, _ = history.pop()
|
51 |
except IndexError:
|
52 |
+
message = ""
|
53 |
+
return history, message or ""
|
54 |
|
55 |
|
56 |
def generate(
|
|
|
71 |
first_response = next(generator)
|
72 |
yield history + [(message, first_response)]
|
73 |
except StopIteration:
|
74 |
+
yield history + [(message, "")]
|
75 |
for response in generator:
|
76 |
yield history + [(message, response)]
|
77 |
|
|
|
80 |
generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
|
81 |
for x in generator:
|
82 |
pass
|
83 |
+
return "", x
|
84 |
|
85 |
|
86 |
def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
|
87 |
input_token_length = get_input_token_length(message, chat_history, system_prompt)
|
88 |
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
|
89 |
+
raise gr.Error(
|
90 |
+
f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again."
|
91 |
+
)
|
92 |
|
93 |
|
94 |
+
with gr.Blocks(css="style.css") as demo:
|
95 |
gr.Markdown(DESCRIPTION)
|
96 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
|
|
97 |
|
98 |
with gr.Group():
|
99 |
+
chatbot = gr.Chatbot(label="Chatbot")
|
100 |
with gr.Row():
|
101 |
textbox = gr.Textbox(
|
102 |
container=False,
|
103 |
show_label=False,
|
104 |
+
placeholder="Type a message...",
|
105 |
scale=10,
|
106 |
)
|
107 |
+
submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0)
|
|
|
|
|
|
|
108 |
with gr.Row():
|
109 |
+
retry_button = gr.Button("🔄 Retry", variant="secondary")
|
110 |
+
undo_button = gr.Button("↩️ Undo", variant="secondary")
|
111 |
+
clear_button = gr.Button("🗑️ Clear", variant="secondary")
|
112 |
|
113 |
saved_input = gr.State()
|
114 |
|
115 |
+
with gr.Accordion(label="Advanced options", open=False):
|
116 |
+
system_prompt = gr.Textbox(label="System prompt", value=DEFAULT_SYSTEM_PROMPT, lines=6)
|
|
|
|
|
117 |
max_new_tokens = gr.Slider(
|
118 |
+
label="Max new tokens",
|
119 |
minimum=1,
|
120 |
maximum=MAX_MAX_NEW_TOKENS,
|
121 |
step=1,
|
122 |
value=DEFAULT_MAX_NEW_TOKENS,
|
123 |
)
|
124 |
temperature = gr.Slider(
|
125 |
+
label="Temperature",
|
126 |
minimum=0.1,
|
127 |
maximum=4.0,
|
128 |
step=0.1,
|
129 |
value=1.0,
|
130 |
)
|
131 |
top_p = gr.Slider(
|
132 |
+
label="Top-p (nucleus sampling)",
|
133 |
minimum=0.05,
|
134 |
maximum=1.0,
|
135 |
step=0.05,
|
136 |
value=0.95,
|
137 |
)
|
138 |
top_k = gr.Slider(
|
139 |
+
label="Top-k",
|
140 |
minimum=1,
|
141 |
maximum=1000,
|
142 |
step=1,
|
|
|
145 |
|
146 |
gr.Examples(
|
147 |
examples=[
|
148 |
+
"Hello there! How are you doing?",
|
149 |
+
"Can you explain briefly to me what is the Python programming language?",
|
150 |
+
"Explain the plot of Cinderella in a sentence.",
|
151 |
+
"How many hours does it take a man to eat a Helicopter?",
|
152 |
"Write a 100-word article on 'Benefits of Open-Source in AI research'",
|
153 |
],
|
154 |
inputs=textbox,
|
|
|
191 |
api_name=False,
|
192 |
)
|
193 |
|
194 |
+
button_event_preprocess = (
|
195 |
+
submit_button.click(
|
196 |
+
fn=clear_and_save_textbox,
|
197 |
+
inputs=textbox,
|
198 |
+
outputs=[textbox, saved_input],
|
199 |
+
api_name=False,
|
200 |
+
queue=False,
|
201 |
+
)
|
202 |
+
.then(
|
203 |
+
fn=display_input,
|
204 |
+
inputs=[saved_input, chatbot],
|
205 |
+
outputs=chatbot,
|
206 |
+
api_name=False,
|
207 |
+
queue=False,
|
208 |
+
)
|
209 |
+
.then(
|
210 |
+
fn=check_input_token_length,
|
211 |
+
inputs=[saved_input, chatbot, system_prompt],
|
212 |
+
api_name=False,
|
213 |
+
queue=False,
|
214 |
+
)
|
215 |
+
.success(
|
216 |
+
fn=generate,
|
217 |
+
inputs=[
|
218 |
+
saved_input,
|
219 |
+
chatbot,
|
220 |
+
system_prompt,
|
221 |
+
max_new_tokens,
|
222 |
+
temperature,
|
223 |
+
top_p,
|
224 |
+
top_k,
|
225 |
+
],
|
226 |
+
outputs=chatbot,
|
227 |
+
api_name=False,
|
228 |
+
)
|
229 |
)
|
230 |
|
231 |
retry_button.click(
|
|
|
270 |
)
|
271 |
|
272 |
clear_button.click(
|
273 |
+
fn=lambda: ([], ""),
|
274 |
outputs=[chatbot, saved_input],
|
275 |
queue=False,
|
276 |
api_name=False,
|
model.py
CHANGED
@@ -4,53 +4,47 @@ from typing import Iterator
|
|
4 |
import torch
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
|
7 |
-
model_id =
|
8 |
|
9 |
if torch.cuda.is_available():
|
10 |
-
model = AutoModelForCausalLM.from_pretrained(
|
11 |
-
model_id,
|
12 |
-
torch_dtype=torch.float16,
|
13 |
-
device_map='auto'
|
14 |
-
)
|
15 |
else:
|
16 |
model = None
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
18 |
|
19 |
|
20 |
-
def get_prompt(message: str, chat_history: list[tuple[str, str]],
|
21 |
-
|
22 |
-
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
|
23 |
# The first user input is _not_ stripped
|
24 |
do_strip = False
|
25 |
for user_input, response in chat_history:
|
26 |
user_input = user_input.strip() if do_strip else user_input
|
27 |
do_strip = True
|
28 |
-
texts.append(f
|
29 |
message = message.strip() if do_strip else message
|
30 |
-
texts.append(f
|
31 |
-
return
|
32 |
|
33 |
|
34 |
def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int:
|
35 |
prompt = get_prompt(message, chat_history, system_prompt)
|
36 |
-
input_ids = tokenizer([prompt], return_tensors=
|
37 |
return input_ids.shape[-1]
|
38 |
|
39 |
|
40 |
-
def run(
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
prompt = get_prompt(message, chat_history, system_prompt)
|
48 |
-
inputs = tokenizer([prompt], return_tensors=
|
49 |
|
50 |
-
streamer = TextIteratorStreamer(tokenizer,
|
51 |
-
timeout=10.,
|
52 |
-
skip_prompt=True,
|
53 |
-
skip_special_tokens=True)
|
54 |
generate_kwargs = dict(
|
55 |
inputs,
|
56 |
streamer=streamer,
|
@@ -67,4 +61,4 @@ def run(message: str,
|
|
67 |
outputs = []
|
68 |
for text in streamer:
|
69 |
outputs.append(text)
|
70 |
-
yield
|
|
|
4 |
import torch
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
|
7 |
+
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
8 |
|
9 |
if torch.cuda.is_available():
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
|
|
|
|
|
|
|
|
11 |
else:
|
12 |
model = None
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
14 |
|
15 |
|
16 |
+
def get_prompt(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> str:
|
17 |
+
texts = [f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"]
|
|
|
18 |
# The first user input is _not_ stripped
|
19 |
do_strip = False
|
20 |
for user_input, response in chat_history:
|
21 |
user_input = user_input.strip() if do_strip else user_input
|
22 |
do_strip = True
|
23 |
+
texts.append(f"{user_input} [/INST] {response.strip()} </s><s>[INST] ")
|
24 |
message = message.strip() if do_strip else message
|
25 |
+
texts.append(f"{message} [/INST]")
|
26 |
+
return "".join(texts)
|
27 |
|
28 |
|
29 |
def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int:
|
30 |
prompt = get_prompt(message, chat_history, system_prompt)
|
31 |
+
input_ids = tokenizer([prompt], return_tensors="np", add_special_tokens=False)["input_ids"]
|
32 |
return input_ids.shape[-1]
|
33 |
|
34 |
|
35 |
+
def run(
|
36 |
+
message: str,
|
37 |
+
chat_history: list[tuple[str, str]],
|
38 |
+
system_prompt: str,
|
39 |
+
max_new_tokens: int = 1024,
|
40 |
+
temperature: float = 0.8,
|
41 |
+
top_p: float = 0.95,
|
42 |
+
top_k: int = 50,
|
43 |
+
) -> Iterator[str]:
|
44 |
prompt = get_prompt(message, chat_history, system_prompt)
|
45 |
+
inputs = tokenizer([prompt], return_tensors="pt", add_special_tokens=False).to("cuda")
|
46 |
|
47 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
|
48 |
generate_kwargs = dict(
|
49 |
inputs,
|
50 |
streamer=streamer,
|
|
|
61 |
outputs = []
|
62 |
for text in streamer:
|
63 |
outputs.append(text)
|
64 |
+
yield "".join(outputs)
|