Spaces:
Runtime error
Runtime error
Minseok Bae
commited on
Commit
·
2864204
1
Parent(s):
404587d
Implemented litellm pipeline
Browse files- requirements.txt +1 -0
- src/backend/model_operations.py +54 -37
- src/display/about.py +4 -4
- src/envs.py +3 -0
requirements.txt
CHANGED
|
@@ -5,6 +5,7 @@ datasets==2.14.5
|
|
| 5 |
gradio==4.4.0
|
| 6 |
gradio_client==0.7.0
|
| 7 |
huggingface-hub>=0.18.0
|
|
|
|
| 8 |
matplotlib==3.7.1
|
| 9 |
numpy==1.24.2
|
| 10 |
pandas==2.0.0
|
|
|
|
| 5 |
gradio==4.4.0
|
| 6 |
gradio_client==0.7.0
|
| 7 |
huggingface-hub>=0.18.0
|
| 8 |
+
litellm==1.15.1
|
| 9 |
matplotlib==3.7.1
|
| 10 |
numpy==1.24.2
|
| 11 |
pandas==2.0.0
|
src/backend/model_operations.py
CHANGED
|
@@ -1,12 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
import spacy
|
| 6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
from sentence_transformers import CrossEncoder
|
|
|
|
| 8 |
|
| 9 |
import src.backend.util as util
|
|
|
|
| 10 |
|
| 11 |
# Set up basic configuration for logging
|
| 12 |
logging.basicConfig(level=logging.INFO,
|
|
@@ -15,6 +20,8 @@ logging.basicConfig(level=logging.INFO,
|
|
| 15 |
# Load spacy model for word tokenization
|
| 16 |
nlp = spacy.load("en_core_web_sm")
|
| 17 |
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def load_evaluation_model(model_path):
|
| 20 |
"""Load the evaluation model from the given path
|
|
@@ -29,6 +36,18 @@ def load_evaluation_model(model_path):
|
|
| 29 |
return model
|
| 30 |
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
class ModelLoadingException(Exception):
|
| 33 |
"""Exception raised for errors in loading a model.
|
| 34 |
|
|
@@ -42,12 +61,13 @@ class ModelLoadingException(Exception):
|
|
| 42 |
self.revision = revision
|
| 43 |
super().__init__(f"{messages} id={model_id} revision={revision}")
|
| 44 |
|
|
|
|
| 45 |
class SummaryGenerator:
|
| 46 |
"""A class to generate summaries using a causal language model.
|
| 47 |
|
| 48 |
Attributes:
|
| 49 |
-
|
| 50 |
-
|
| 51 |
summaries_df (DataFrame): DataFrame to store generated summaries.
|
| 52 |
revision (str): Model revision.
|
| 53 |
avg_length (float): Average length of summaries.
|
|
@@ -62,17 +82,13 @@ class SummaryGenerator:
|
|
| 62 |
model_id (str): Identifier for the model.
|
| 63 |
revision (str): Revision of the model.
|
| 64 |
"""
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
self.model = AutoModelForCausalLM.from_pretrained(model_id, revision)
|
| 68 |
-
except Exception as e:
|
| 69 |
-
logging.error(f"Error initializing model with id {model_id} and revision {revision}: {e}")
|
| 70 |
-
raise ModelLoadingException(model_id, revision) from e
|
| 71 |
self.summaries_df = pd.DataFrame()
|
| 72 |
self.revision = revision
|
| 73 |
self.avg_length = None
|
| 74 |
self.answer_rate = None
|
| 75 |
-
self.
|
| 76 |
|
| 77 |
def generate_summaries(self, df):
|
| 78 |
"""Generate summaries for a given DataFrame of source docs.
|
|
@@ -84,34 +100,43 @@ class SummaryGenerator:
|
|
| 84 |
summaries_df (DataFrame): Generated summaries by the model.
|
| 85 |
"""
|
| 86 |
source, summary, dataset = [], [], []
|
|
|
|
| 87 |
|
| 88 |
-
error_count = 0
|
| 89 |
for index, row in df.iterrows():
|
| 90 |
_source = row['text']
|
| 91 |
_dataset = row['dataset']
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)),
|
| 111 |
columns=["source", "summary", "dataset"])
|
|
|
|
| 112 |
self._compute_avg_length()
|
| 113 |
self._compute_answer_rate()
|
| 114 |
-
# self._compute_error_rate(error_count)
|
| 115 |
|
| 116 |
return self.summaries_df
|
| 117 |
|
|
@@ -140,14 +165,6 @@ class SummaryGenerator:
|
|
| 140 |
|
| 141 |
self.answer_rate = 0 if total_rows == 0 else non_empty_count / total_rows
|
| 142 |
|
| 143 |
-
# def _compute_error_rate(self, count):
|
| 144 |
-
# """
|
| 145 |
-
# Compute the error rate of summaries.
|
| 146 |
-
# """
|
| 147 |
-
# total_rows = len(self.summaries_df)
|
| 148 |
-
|
| 149 |
-
# self.error_rate = 0 if total_rows == 0 else count / total_rows
|
| 150 |
-
|
| 151 |
|
| 152 |
class EvaluationModel:
|
| 153 |
"""A class to evaluate generated summaries.
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
from datetime import datetime
|
| 4 |
import logging
|
| 5 |
|
| 6 |
import numpy as np
|
| 7 |
import pandas as pd
|
| 8 |
import spacy
|
| 9 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 10 |
from sentence_transformers import CrossEncoder
|
| 11 |
+
from litellm import completion
|
| 12 |
|
| 13 |
import src.backend.util as util
|
| 14 |
+
import src.envs as envs
|
| 15 |
|
| 16 |
# Set up basic configuration for logging
|
| 17 |
logging.basicConfig(level=logging.INFO,
|
|
|
|
| 20 |
# Load spacy model for word tokenization
|
| 21 |
nlp = spacy.load("en_core_web_sm")
|
| 22 |
|
| 23 |
+
os.environ["HUGGINGFACE_API_KEY"] = envs.TOKEN
|
| 24 |
+
|
| 25 |
|
| 26 |
def load_evaluation_model(model_path):
|
| 27 |
"""Load the evaluation model from the given path
|
|
|
|
| 36 |
return model
|
| 37 |
|
| 38 |
|
| 39 |
+
def generate_summary(model: str, system_prompt: str, user_prompt: str, api_base: str):
|
| 40 |
+
response = completion(
|
| 41 |
+
model=model,
|
| 42 |
+
messages=[{"role": "system", "content": system_prompt},
|
| 43 |
+
{"role": "user", "content": user_prompt}],
|
| 44 |
+
temperature=0.0,
|
| 45 |
+
max_tokens=1024,
|
| 46 |
+
api_base=api_base,
|
| 47 |
+
)
|
| 48 |
+
return response['choices'][0]['message']['content']
|
| 49 |
+
|
| 50 |
+
|
| 51 |
class ModelLoadingException(Exception):
|
| 52 |
"""Exception raised for errors in loading a model.
|
| 53 |
|
|
|
|
| 61 |
self.revision = revision
|
| 62 |
super().__init__(f"{messages} id={model_id} revision={revision}")
|
| 63 |
|
| 64 |
+
|
| 65 |
class SummaryGenerator:
|
| 66 |
"""A class to generate summaries using a causal language model.
|
| 67 |
|
| 68 |
Attributes:
|
| 69 |
+
model (str): huggingface/{model_id}
|
| 70 |
+
api_base (str): https://api-inference.huggingface.co/models/{model_id}
|
| 71 |
summaries_df (DataFrame): DataFrame to store generated summaries.
|
| 72 |
revision (str): Model revision.
|
| 73 |
avg_length (float): Average length of summaries.
|
|
|
|
| 82 |
model_id (str): Identifier for the model.
|
| 83 |
revision (str): Revision of the model.
|
| 84 |
"""
|
| 85 |
+
self.model = f"huggingface/{model_id}"
|
| 86 |
+
self.api_base = f"https://api-inference.huggingface.co/models/{model_id}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
self.summaries_df = pd.DataFrame()
|
| 88 |
self.revision = revision
|
| 89 |
self.avg_length = None
|
| 90 |
self.answer_rate = None
|
| 91 |
+
self.exceptions = None
|
| 92 |
|
| 93 |
def generate_summaries(self, df):
|
| 94 |
"""Generate summaries for a given DataFrame of source docs.
|
|
|
|
| 100 |
summaries_df (DataFrame): Generated summaries by the model.
|
| 101 |
"""
|
| 102 |
source, summary, dataset = [], [], []
|
| 103 |
+
exceptions = []
|
| 104 |
|
|
|
|
| 105 |
for index, row in df.iterrows():
|
| 106 |
_source = row['text']
|
| 107 |
_dataset = row['dataset']
|
| 108 |
+
|
| 109 |
+
system_prompt = envs.SYSTEM_PROMPT
|
| 110 |
+
user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
|
| 111 |
+
|
| 112 |
+
while True:
|
| 113 |
+
try:
|
| 114 |
+
_summary = generate_summary(self.model, system_prompt,
|
| 115 |
+
user_prompt, self.api_base)
|
| 116 |
+
break
|
| 117 |
+
except Exception as e:
|
| 118 |
+
if 'Rate limit reached' in str(e):
|
| 119 |
+
wait_time = 3660
|
| 120 |
+
current_time = datetime.now().strftime('%H:%M:%S')
|
| 121 |
+
print(f"Rate limit hit at {current_time}. Waiting for 1 hour before retrying...")
|
| 122 |
+
time.sleep(wait_time)
|
| 123 |
+
else:
|
| 124 |
+
print(f"Error at index {index}: {e}")
|
| 125 |
+
_summary = ""
|
| 126 |
+
exceptions.append(index)
|
| 127 |
+
break
|
| 128 |
+
|
| 129 |
+
summary.append(_summary)
|
| 130 |
+
source.append(_source)
|
| 131 |
+
dataset.append(_dataset)
|
| 132 |
+
|
| 133 |
+
time.sleep(1)
|
| 134 |
|
| 135 |
self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)),
|
| 136 |
columns=["source", "summary", "dataset"])
|
| 137 |
+
self.exceptions = exceptions
|
| 138 |
self._compute_avg_length()
|
| 139 |
self._compute_answer_rate()
|
|
|
|
| 140 |
|
| 141 |
return self.summaries_df
|
| 142 |
|
|
|
|
| 165 |
|
| 166 |
self.answer_rate = 0 if total_rows == 0 else non_empty_count / total_rows
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
class EvaluationModel:
|
| 170 |
"""A class to evaluate generated summaries.
|
src/display/about.py
CHANGED
|
@@ -43,10 +43,10 @@ Our evaluation dataset is composed of 1006 documents from multiple public datase
|
|
| 43 |
We generate summaries for each of these documents using submitted LLMs and compute hallucination scores for each pair of document and generated summary. (Check the prompt we used [here](https://huggingface.co/spaces/vectara/Hallucination-evaluation-leaderboard))
|
| 44 |
|
| 45 |
## Understand each metric
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
|
| 51 |
## Reproducibility
|
| 52 |
To reproduce our results, here is the commands you can run:
|
|
|
|
| 43 |
We generate summaries for each of these documents using submitted LLMs and compute hallucination scores for each pair of document and generated summary. (Check the prompt we used [here](https://huggingface.co/spaces/vectara/Hallucination-evaluation-leaderboard))
|
| 44 |
|
| 45 |
## Understand each metric
|
| 46 |
+
- Hallucination Rate: The percentage of summaries that have a hallucination score below 0.5
|
| 47 |
+
- Factual Consistency Rate: (1 - Hallucination Rate) * 100 (%)
|
| 48 |
+
- Answer Rate: The percentage of summaries that are non-empty. (This is a proxy for whether the model generates a summary at all)
|
| 49 |
+
- Average Summary Length: The average number of words in the generated summaries
|
| 50 |
|
| 51 |
## Reproducibility
|
| 52 |
To reproduce our results, here is the commands you can run:
|
src/envs.py
CHANGED
|
@@ -24,3 +24,6 @@ API = HfApi(token=TOKEN)
|
|
| 24 |
SOURCE_PATH = "src/datasets/leaderboard_dataset.csv"
|
| 25 |
SAMPLE_DATASET_PATH = "src/datasets/sample_dataset.csv"
|
| 26 |
HEM_PATH = 'vectara/hallucination_evaluation_model'
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
SOURCE_PATH = "src/datasets/leaderboard_dataset.csv"
|
| 25 |
SAMPLE_DATASET_PATH = "src/datasets/sample_dataset.csv"
|
| 26 |
HEM_PATH = 'vectara/hallucination_evaluation_model'
|
| 27 |
+
|
| 28 |
+
SYSTEM_PROMPT = "You are a chat bot answering questions using data. You must stick to the answers provided solely by the text in the passage provided."
|
| 29 |
+
USER_PROMPT = "You are asked the question 'Provide a concise summary of the following passage, covering the core pieces of information described': "
|