|
''' |
|
按中英混合识别 |
|
按日英混合识别 |
|
多语种启动切分识别语种 |
|
全部按中文识别 |
|
全部按英文识别 |
|
全部按日文识别 |
|
''' |
|
import logging |
|
import traceback |
|
|
|
logging.getLogger("markdown_it").setLevel(logging.ERROR) |
|
logging.getLogger("urllib3").setLevel(logging.ERROR) |
|
logging.getLogger("httpcore").setLevel(logging.ERROR) |
|
logging.getLogger("httpx").setLevel(logging.ERROR) |
|
logging.getLogger("asyncio").setLevel(logging.ERROR) |
|
logging.getLogger("charset_normalizer").setLevel(logging.ERROR) |
|
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) |
|
logging.getLogger("multipart.multipart").setLevel(logging.ERROR) |
|
import LangSegment, os, re, sys, json |
|
import pdb |
|
import torch |
|
|
|
version="v2" |
|
cnhubert_base_path = os.environ.get( |
|
"cnhubert_base_path", "pretrained_models/chinese-hubert-base" |
|
) |
|
bert_path = os.environ.get( |
|
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large" |
|
) |
|
|
|
punctuation = set(['!', '?', '…', ',', '.', '-'," "]) |
|
import gradio as gr |
|
from transformers import AutoModelForMaskedLM, AutoTokenizer |
|
import numpy as np |
|
import librosa |
|
from feature_extractor import cnhubert |
|
|
|
cnhubert.cnhubert_base_path = cnhubert_base_path |
|
|
|
from module.models import SynthesizerTrn |
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule |
|
from text import cleaned_text_to_sequence |
|
from text.cleaner import clean_text |
|
from time import time as ttime |
|
from module.mel_processing import spectrogram_torch |
|
from tools.my_utils import load_audio |
|
from tools.i18n.i18n import I18nAuto, scan_language_list |
|
|
|
|
|
|
|
i18n = I18nAuto(language="Auto") |
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
is_half = True |
|
else: |
|
device = "cpu" |
|
is_half=False |
|
|
|
dict_language_v1 = { |
|
i18n("中文"): "all_zh", |
|
i18n("英文"): "en", |
|
i18n("日文"): "all_ja", |
|
i18n("中英混合"): "zh", |
|
i18n("日英混合"): "ja", |
|
i18n("多语种混合"): "auto", |
|
} |
|
dict_language_v2 = { |
|
i18n("中文"): "all_zh", |
|
i18n("英文"): "en", |
|
i18n("日文"): "all_ja", |
|
i18n("粤语"): "all_yue", |
|
i18n("韩文"): "all_ko", |
|
i18n("中英混合"): "zh", |
|
i18n("日英混合"): "ja", |
|
i18n("粤英混合"): "yue", |
|
i18n("韩英混合"): "ko", |
|
i18n("多语种混合"): "auto", |
|
i18n("多语种混合(粤语)"): "auto_yue", |
|
} |
|
dict_language = dict_language_v1 if version =='v1' else dict_language_v2 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_path) |
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) |
|
if is_half == True: |
|
bert_model = bert_model.half().to(device) |
|
else: |
|
bert_model = bert_model.to(device) |
|
|
|
|
|
def get_bert_feature(text, word2ph): |
|
with torch.no_grad(): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
for i in inputs: |
|
inputs[i] = inputs[i].to(device) |
|
res = bert_model(**inputs, output_hidden_states=True) |
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] |
|
assert len(word2ph) == len(text) |
|
phone_level_feature = [] |
|
for i in range(len(word2ph)): |
|
repeat_feature = res[i].repeat(word2ph[i], 1) |
|
phone_level_feature.append(repeat_feature) |
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
return phone_level_feature.T |
|
|
|
|
|
class DictToAttrRecursive(dict): |
|
def __init__(self, input_dict): |
|
super().__init__(input_dict) |
|
for key, value in input_dict.items(): |
|
if isinstance(value, dict): |
|
value = DictToAttrRecursive(value) |
|
self[key] = value |
|
setattr(self, key, value) |
|
|
|
def __getattr__(self, item): |
|
try: |
|
return self[item] |
|
except KeyError: |
|
raise AttributeError(f"Attribute {item} not found") |
|
|
|
def __setattr__(self, key, value): |
|
if isinstance(value, dict): |
|
value = DictToAttrRecursive(value) |
|
super(DictToAttrRecursive, self).__setitem__(key, value) |
|
super().__setattr__(key, value) |
|
|
|
def __delattr__(self, item): |
|
try: |
|
del self[item] |
|
except KeyError: |
|
raise AttributeError(f"Attribute {item} not found") |
|
|
|
|
|
ssl_model = cnhubert.get_model() |
|
if is_half == True: |
|
ssl_model = ssl_model.half().to(device) |
|
else: |
|
ssl_model = ssl_model.to(device) |
|
|
|
|
|
def change_sovits_weights(sovits_path,prompt_language=None,text_language=None): |
|
global vq_model, hps, version, dict_language |
|
dict_s2 = torch.load(sovits_path, map_location="cpu") |
|
hps = dict_s2["config"] |
|
hps = DictToAttrRecursive(hps) |
|
hps.model.semantic_frame_rate = "25hz" |
|
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322: |
|
hps.model.version = "v1" |
|
else: |
|
hps.model.version = "v2" |
|
version = hps.model.version |
|
|
|
vq_model = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model |
|
) |
|
if ("pretrained" not in sovits_path): |
|
del vq_model.enc_q |
|
if is_half == True: |
|
vq_model = vq_model.half().to(device) |
|
else: |
|
vq_model = vq_model.to(device) |
|
vq_model.eval() |
|
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) |
|
dict_language = dict_language_v1 if version =='v1' else dict_language_v2 |
|
if prompt_language is not None and text_language is not None: |
|
if prompt_language in list(dict_language.keys()): |
|
prompt_text_update, prompt_language_update = {'__type__':'update'}, {'__type__':'update', 'value':prompt_language} |
|
else: |
|
prompt_text_update = {'__type__':'update', 'value':''} |
|
prompt_language_update = {'__type__':'update', 'value':i18n("中文")} |
|
if text_language in list(dict_language.keys()): |
|
text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language} |
|
else: |
|
text_update = {'__type__':'update', 'value':''} |
|
text_language_update = {'__type__':'update', 'value':i18n("中文")} |
|
return {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update |
|
|
|
|
|
|
|
change_sovits_weights("pretrained_models/gsv-v2final-pretrained/s2G2333k.pth") |
|
|
|
|
|
def change_gpt_weights(gpt_path): |
|
global hz, max_sec, t2s_model, config |
|
hz = 50 |
|
dict_s1 = torch.load(gpt_path, map_location="cpu") |
|
config = dict_s1["config"] |
|
max_sec = config["data"]["max_sec"] |
|
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) |
|
t2s_model.load_state_dict(dict_s1["weight"]) |
|
if is_half == True: |
|
t2s_model = t2s_model.half() |
|
t2s_model = t2s_model.to(device) |
|
t2s_model.eval() |
|
total = sum([param.nelement() for param in t2s_model.parameters()]) |
|
print("Number of parameter: %.2fM" % (total / 1e6)) |
|
|
|
|
|
change_gpt_weights("pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt") |
|
|
|
|
|
def get_spepc(hps, filename): |
|
audio = load_audio(filename, int(hps.data.sampling_rate)) |
|
audio = torch.FloatTensor(audio) |
|
maxx=audio.abs().max() |
|
if(maxx>1):audio/=min(2,maxx) |
|
audio_norm = audio |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
hps.data.filter_length, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
center=False, |
|
) |
|
return spec |
|
|
|
def clean_text_inf(text, language, version): |
|
phones, word2ph, norm_text = clean_text(text, language, version) |
|
phones = cleaned_text_to_sequence(phones, version) |
|
return phones, word2ph, norm_text |
|
|
|
dtype=torch.float16 if is_half == True else torch.float32 |
|
def get_bert_inf(phones, word2ph, norm_text, language): |
|
language=language.replace("all_","") |
|
if language == "zh": |
|
bert = get_bert_feature(norm_text, word2ph).to(device) |
|
else: |
|
bert = torch.zeros( |
|
(1024, len(phones)), |
|
dtype=torch.float16 if is_half == True else torch.float32, |
|
).to(device) |
|
|
|
return bert |
|
|
|
|
|
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } |
|
|
|
|
|
def get_first(text): |
|
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" |
|
text = re.split(pattern, text)[0].strip() |
|
return text |
|
|
|
from text import chinese |
|
def get_phones_and_bert(text,language,version): |
|
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}: |
|
language = language.replace("all_","") |
|
if language == "en": |
|
LangSegment.setfilters(["en"]) |
|
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text)) |
|
else: |
|
|
|
formattext = text |
|
while " " in formattext: |
|
formattext = formattext.replace(" ", " ") |
|
if language == "zh": |
|
if re.search(r'[A-Za-z]', formattext): |
|
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext) |
|
formattext = chinese.mix_text_normalize(formattext) |
|
return get_phones_and_bert(formattext,"zh",version) |
|
else: |
|
phones, word2ph, norm_text = clean_text_inf(formattext, language, version) |
|
bert = get_bert_feature(norm_text, word2ph).to(device) |
|
elif language == "yue" and re.search(r'[A-Za-z]', formattext): |
|
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext) |
|
formattext = chinese.mix_text_normalize(formattext) |
|
return get_phones_and_bert(formattext,"yue",version) |
|
else: |
|
phones, word2ph, norm_text = clean_text_inf(formattext, language, version) |
|
bert = torch.zeros( |
|
(1024, len(phones)), |
|
dtype=torch.float16 if is_half == True else torch.float32, |
|
).to(device) |
|
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}: |
|
textlist=[] |
|
langlist=[] |
|
LangSegment.setfilters(["zh","ja","en","ko"]) |
|
if language == "auto": |
|
for tmp in LangSegment.getTexts(text): |
|
langlist.append(tmp["lang"]) |
|
textlist.append(tmp["text"]) |
|
elif language == "auto_yue": |
|
for tmp in LangSegment.getTexts(text): |
|
if tmp["lang"] == "zh": |
|
tmp["lang"] = "yue" |
|
langlist.append(tmp["lang"]) |
|
textlist.append(tmp["text"]) |
|
else: |
|
for tmp in LangSegment.getTexts(text): |
|
if tmp["lang"] == "en": |
|
langlist.append(tmp["lang"]) |
|
else: |
|
|
|
langlist.append(language) |
|
textlist.append(tmp["text"]) |
|
print(textlist) |
|
print(langlist) |
|
phones_list = [] |
|
bert_list = [] |
|
norm_text_list = [] |
|
for i in range(len(textlist)): |
|
lang = langlist[i] |
|
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version) |
|
bert = get_bert_inf(phones, word2ph, norm_text, lang) |
|
phones_list.append(phones) |
|
norm_text_list.append(norm_text) |
|
bert_list.append(bert) |
|
bert = torch.cat(bert_list, dim=1) |
|
phones = sum(phones_list, []) |
|
norm_text = ''.join(norm_text_list) |
|
|
|
return phones,bert.to(dtype),norm_text |
|
|
|
|
|
def merge_short_text_in_array(texts, threshold): |
|
if (len(texts)) < 2: |
|
return texts |
|
result = [] |
|
text = "" |
|
for ele in texts: |
|
text += ele |
|
if len(text) >= threshold: |
|
result.append(text) |
|
text = "" |
|
if (len(text) > 0): |
|
if len(result) == 0: |
|
result.append(text) |
|
else: |
|
result[len(result) - 1] += text |
|
return result |
|
|
|
|
|
|
|
cache= {} |
|
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False,speed=1,if_freeze=False,inp_refs=123): |
|
global cache |
|
if ref_wav_path:pass |
|
else:gr.Warning(i18n('请上传参考音频')) |
|
if text:pass |
|
else:gr.Warning(i18n('请填入推理文本')) |
|
t = [] |
|
if prompt_text is None or len(prompt_text) == 0: |
|
ref_free = True |
|
t0 = ttime() |
|
prompt_language = dict_language[prompt_language] |
|
text_language = dict_language[text_language] |
|
|
|
|
|
if not ref_free: |
|
prompt_text = prompt_text.strip("\n") |
|
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "." |
|
print(i18n("实际输入的参考文本:"), prompt_text) |
|
text = text.strip("\n") |
|
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text |
|
|
|
print(i18n("实际输入的目标文本:"), text) |
|
zero_wav = np.zeros( |
|
int(hps.data.sampling_rate * 0.3), |
|
dtype=np.float16 if is_half == True else np.float32, |
|
) |
|
if not ref_free: |
|
with torch.no_grad(): |
|
wav16k, sr = librosa.load(ref_wav_path, sr=16000) |
|
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): |
|
gr.Warning(i18n("参考音频在3~10秒范围外,请更换!")) |
|
raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) |
|
wav16k = torch.from_numpy(wav16k) |
|
zero_wav_torch = torch.from_numpy(zero_wav) |
|
if is_half == True: |
|
wav16k = wav16k.half().to(device) |
|
zero_wav_torch = zero_wav_torch.half().to(device) |
|
else: |
|
wav16k = wav16k.to(device) |
|
zero_wav_torch = zero_wav_torch.to(device) |
|
wav16k = torch.cat([wav16k, zero_wav_torch]) |
|
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ |
|
"last_hidden_state" |
|
].transpose( |
|
1, 2 |
|
) |
|
codes = vq_model.extract_latent(ssl_content) |
|
prompt_semantic = codes[0, 0] |
|
prompt = prompt_semantic.unsqueeze(0).to(device) |
|
|
|
t1 = ttime() |
|
t.append(t1-t0) |
|
|
|
if (how_to_cut == i18n("凑四句一切")): |
|
text = cut1(text) |
|
elif (how_to_cut == i18n("凑50字一切")): |
|
text = cut2(text) |
|
elif (how_to_cut == i18n("按中文句号。切")): |
|
text = cut3(text) |
|
elif (how_to_cut == i18n("按英文句号.切")): |
|
text = cut4(text) |
|
elif (how_to_cut == i18n("按标点符号切")): |
|
text = cut5(text) |
|
while "\n\n" in text: |
|
text = text.replace("\n\n", "\n") |
|
print(i18n("实际输入的目标文本(切句后):"), text) |
|
texts = text.split("\n") |
|
texts = process_text(texts) |
|
texts = merge_short_text_in_array(texts, 5) |
|
audio_opt = [] |
|
if not ref_free: |
|
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version) |
|
|
|
for i_text,text in enumerate(texts): |
|
|
|
if (len(text.strip()) == 0): |
|
continue |
|
if (text[-1] not in splits): text += "。" if text_language != "en" else "." |
|
print(i18n("实际输入的目标文本(每句):"), text) |
|
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language, version) |
|
print(i18n("前端处理后的文本(每句):"), norm_text2) |
|
if not ref_free: |
|
bert = torch.cat([bert1, bert2], 1) |
|
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0) |
|
else: |
|
bert = bert2 |
|
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0) |
|
|
|
bert = bert.to(device).unsqueeze(0) |
|
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) |
|
|
|
t2 = ttime() |
|
|
|
|
|
if(i_text in cache and if_freeze==True):pred_semantic=cache[i_text] |
|
else: |
|
with torch.no_grad(): |
|
pred_semantic, idx = t2s_model.model.infer_panel( |
|
all_phoneme_ids, |
|
all_phoneme_len, |
|
None if ref_free else prompt, |
|
bert, |
|
|
|
top_k=top_k, |
|
top_p=top_p, |
|
temperature=temperature, |
|
early_stop_num=hz * max_sec, |
|
) |
|
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) |
|
cache[i_text]=pred_semantic |
|
t3 = ttime() |
|
refers=[] |
|
if(inp_refs): |
|
for path in inp_refs: |
|
try: |
|
refer = get_spepc(hps, path.name).to(dtype).to(device) |
|
refers.append(refer) |
|
except: |
|
traceback.print_exc() |
|
if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)] |
|
audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0]) |
|
max_audio=np.abs(audio).max() |
|
if max_audio>1:audio/=max_audio |
|
audio_opt.append(audio) |
|
audio_opt.append(zero_wav) |
|
t4 = ttime() |
|
t.extend([t2 - t1,t3 - t2, t4 - t3]) |
|
t1 = ttime() |
|
print("%.3f\t%.3f\t%.3f\t%.3f" % |
|
(t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])) |
|
) |
|
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype( |
|
np.int16 |
|
) |
|
|
|
|
|
def split(todo_text): |
|
todo_text = todo_text.replace("……", "。").replace("——", ",") |
|
if todo_text[-1] not in splits: |
|
todo_text += "。" |
|
i_split_head = i_split_tail = 0 |
|
len_text = len(todo_text) |
|
todo_texts = [] |
|
while 1: |
|
if i_split_head >= len_text: |
|
break |
|
if todo_text[i_split_head] in splits: |
|
i_split_head += 1 |
|
todo_texts.append(todo_text[i_split_tail:i_split_head]) |
|
i_split_tail = i_split_head |
|
else: |
|
i_split_head += 1 |
|
return todo_texts |
|
|
|
|
|
def cut1(inp): |
|
inp = inp.strip("\n") |
|
inps = split(inp) |
|
split_idx = list(range(0, len(inps), 4)) |
|
split_idx[-1] = None |
|
if len(split_idx) > 1: |
|
opts = [] |
|
for idx in range(len(split_idx) - 1): |
|
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) |
|
else: |
|
opts = [inp] |
|
opts = [item for item in opts if not set(item).issubset(punctuation)] |
|
return "\n".join(opts) |
|
|
|
|
|
def cut2(inp): |
|
inp = inp.strip("\n") |
|
inps = split(inp) |
|
if len(inps) < 2: |
|
return inp |
|
opts = [] |
|
summ = 0 |
|
tmp_str = "" |
|
for i in range(len(inps)): |
|
summ += len(inps[i]) |
|
tmp_str += inps[i] |
|
if summ > 50: |
|
summ = 0 |
|
opts.append(tmp_str) |
|
tmp_str = "" |
|
if tmp_str != "": |
|
opts.append(tmp_str) |
|
|
|
if len(opts) > 1 and len(opts[-1]) < 50: |
|
opts[-2] = opts[-2] + opts[-1] |
|
opts = opts[:-1] |
|
opts = [item for item in opts if not set(item).issubset(punctuation)] |
|
return "\n".join(opts) |
|
|
|
|
|
def cut3(inp): |
|
inp = inp.strip("\n") |
|
opts = ["%s" % item for item in inp.strip("。").split("。")] |
|
opts = [item for item in opts if not set(item).issubset(punctuation)] |
|
return "\n".join(opts) |
|
|
|
def cut4(inp): |
|
inp = inp.strip("\n") |
|
opts = ["%s" % item for item in inp.strip(".").split(".")] |
|
opts = [item for item in opts if not set(item).issubset(punctuation)] |
|
return "\n".join(opts) |
|
|
|
|
|
|
|
def cut5(inp): |
|
inp = inp.strip("\n") |
|
punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'} |
|
mergeitems = [] |
|
items = [] |
|
|
|
for i, char in enumerate(inp): |
|
if char in punds: |
|
if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit(): |
|
items.append(char) |
|
else: |
|
items.append(char) |
|
mergeitems.append("".join(items)) |
|
items = [] |
|
else: |
|
items.append(char) |
|
|
|
if items: |
|
mergeitems.append("".join(items)) |
|
|
|
opt = [item for item in mergeitems if not set(item).issubset(punds)] |
|
return "\n".join(opt) |
|
|
|
|
|
def custom_sort_key(s): |
|
|
|
parts = re.split('(\d+)', s) |
|
|
|
parts = [int(part) if part.isdigit() else part for part in parts] |
|
return parts |
|
|
|
def process_text(texts): |
|
_text=[] |
|
if all(text in [None, " ", "\n",""] for text in texts): |
|
raise ValueError(i18n("请输入有效文本")) |
|
for text in texts: |
|
if text in [None, " ", ""]: |
|
pass |
|
else: |
|
_text.append(text) |
|
return _text |
|
|
|
|
|
def html_center(text, label='p'): |
|
return f"""<div style="text-align: center; margin: 100; padding: 50;"> |
|
<{label} style="margin: 0; padding: 0;">{text}</{label}> |
|
</div>""" |
|
|
|
def html_left(text, label='p'): |
|
return f"""<div style="text-align: left; margin: 0; padding: 0;"> |
|
<{label} style="margin: 0; padding: 0;">{text}</{label}> |
|
</div>""" |
|
|
|
|
|
with gr.Blocks(title="GPT-SoVITS WebUI") as app: |
|
gr.Markdown( |
|
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.") |
|
) |
|
with gr.Group(): |
|
gr.Markdown(html_center(i18n("*请上传并填写参考信息"),'h3')) |
|
with gr.Row(): |
|
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath") |
|
with gr.Column(): |
|
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True) |
|
gr.Markdown(html_left(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开。<br>开启后无视填写的参考文本。"))) |
|
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=3, max_lines=3) |
|
prompt_language = gr.Dropdown( |
|
label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文") |
|
) |
|
inp_refs = gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。"),file_count="file_count") |
|
gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"),'h3')) |
|
with gr.Row(): |
|
with gr.Column(): |
|
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26) |
|
with gr.Column(): |
|
text_language = gr.Dropdown( |
|
label=i18n("需要合成的语种")+i18n(".限制范围越小判别效果越好。"), choices=list(dict_language.keys()), value=i18n("中文") |
|
) |
|
how_to_cut = gr.Dropdown( |
|
label=i18n("怎么切"), |
|
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ], |
|
value=i18n("凑四句一切"), |
|
interactive=True |
|
) |
|
gr.Markdown(value=html_center(i18n("语速调整,高为更快"))) |
|
if_freeze=gr.Checkbox(label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"), value=False, interactive=True,show_label=True) |
|
speed = gr.Slider(minimum=0.6,maximum=1.65,step=0.05,label=i18n("语速"),value=1,interactive=True) |
|
gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):"))) |
|
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=15,interactive=True) |
|
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True) |
|
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True) |
|
with gr.Row(): |
|
inference_button = gr.Button(i18n("合成语音"), variant="primary", size='lg') |
|
output = gr.Audio(label=i18n("输出的语音")) |
|
|
|
inference_button.click( |
|
get_tts_wav, |
|
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free,speed,if_freeze,inp_refs], |
|
[output], |
|
) |
|
|
|
if __name__ == '__main__': |
|
app.queue(concurrency_count=511, max_size=1022).launch( |
|
server_name="0.0.0.0", |
|
inbrowser=True, |
|
|
|
|
|
quiet=True, |
|
) |
|
|