Fashion-FLUX / app.py
fantos's picture
Update app.py
450db89 verified
raw
history blame
7.03 kB
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
from transformers import pipeline
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
# λ²ˆμ—­ λͺ¨λΈ μ΄ˆκΈ°ν™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Xmas-Realpix-LoRA"
trigger_word = ""
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")
MAX_SEED = 2**32-1
@spaces.GPU()
def translate_and_generate(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
# ν•œκΈ€ 감지 및 λ²ˆμ—­
def contains_korean(text):
return any(ord('κ°€') <= ord(char) <= ord('힣') for char in text)
if contains_korean(prompt):
# ν•œκΈ€μ„ μ˜μ–΄λ‘œ λ²ˆμ—­
translated = translator(prompt)[0]['translation_text']
actual_prompt = translated
else:
actual_prompt = prompt
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
progress(0, "Starting image generation...")
for i in range(1, steps + 1):
if i % (steps // 10) == 0:
progress(i / steps * 100, f"Processing step {i} of {steps}...")
image = pipe(
prompt=f"{actual_prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
progress(100, "Completed!")
return image, seed
example_image_path = "example0.webp"
example_prompt = """Pixel Background, a silhouette of a surfer is seen riding a wave on a red surfboard. The surfers shadow is cast on the left side of the image, adding a touch of depth to the composition. The background is a vibrant orange, pink, and blue, with a sun setting in the upper right corner of the frame. The silhouette of the surfer, a palm tree casts a shadow onto the wave, adding depth and contrast to the scene."""
example_cfg_scale = 3.2
example_steps = 32
example_width = 1152
example_height = 896
example_seed = 3981632454
example_lora_scale = 0.85
def load_example():
example_image = Image.open(example_image_path)
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image
css = """
.container {max-width: 1400px; margin: auto; padding: 20px;}
.header {text-align: center; margin-bottom: 30px;}
.generate-btn {background-color: #2ecc71 !important; color: white !important; margin: 20px auto !important; display: block !important; width: 200px !important;}
.generate-btn:hover {background-color: #27ae60 !important;}
.parameter-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px; margin: 10px 0;}
.result-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px; margin: 0 auto 20px auto; text-align: center;}
.image-output {margin: 0 auto; display: block; max-width: 800px !important;}
.accordion {margin-top: 20px;}
"""
with gr.Blocks(css=css) as app:
with gr.Column(elem_classes="container"):
gr.Markdown("# 🎨 Flux ART Image Generator", elem_classes="header")
# 이미지 좜λ ₯ μ˜μ—­μ„ λ¨Όμ € 배치
with gr.Group(elem_classes="result-box"):
gr.Markdown("### πŸ–ΌοΈ Generated Image")
result = gr.Image(label="Result", elem_classes="image-output")
# 생성 λ²„νŠΌ
generate_button = gr.Button(
"πŸš€ Generate Image",
elem_classes="generate-btn"
)
# μ˜΅μ…˜λ“€μ„ μ•„μ½”λ””μ–ΈμœΌλ‘œ ꡬ성
with gr.Accordion("🎨 Generation Options", open=False, elem_classes="accordion"):
with gr.Group(elem_classes="parameter-box"):
prompt = gr.TextArea(
label="✍️ Your Prompt (ν•œκΈ€ λ˜λŠ” μ˜μ–΄)",
placeholder="이미지λ₯Ό μ„€λͺ…ν•˜μ„Έμš”... (ν•œκΈ€ μž…λ ₯μ‹œ μžλ™μœΌλ‘œ μ˜μ–΄λ‘œ λ²ˆμ—­λ©λ‹ˆλ‹€)",
lines=5
)
with gr.Group(elem_classes="parameter-box"):
gr.Markdown("### πŸŽ›οΈ Generation Parameters")
with gr.Row():
with gr.Column():
cfg_scale = gr.Slider(
label="CFG Scale",
minimum=1,
maximum=20,
step=0.5,
value=example_cfg_scale
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=100,
step=1,
value=example_steps
)
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0,
maximum=1,
step=0.01,
value=example_lora_scale
)
with gr.Group(elem_classes="parameter-box"):
gr.Markdown("### πŸ“ Image Dimensions")
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=1536,
step=64,
value=example_width
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=1536,
step=64,
value=example_height
)
with gr.Group(elem_classes="parameter-box"):
gr.Markdown("### 🎲 Seed Settings")
with gr.Row():
randomize_seed = gr.Checkbox(
True,
label="Randomize seed"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=example_seed
)
app.load(
load_example,
inputs=[],
outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result]
)
generate_button.click(
translate_and_generate,
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
app.queue()
app.launch()